Python 機器學習建模與部署 -- 從 Keras到 Kubernetes (Keras to Kubernetes: The Journey of a Machine Learning Model to Production)

Dattaraj Rao 著

  • Python 機器學習建模與部署 -- 從 Keras到 Kubernetes (Keras to Kubernetes: The Journey of a Machine Learning Model to Production)-preview-1
  • Python 機器學習建模與部署 -- 從 Keras到 Kubernetes (Keras to Kubernetes: The Journey of a Machine Learning Model to Production)-preview-2
Python 機器學習建模與部署 -- 從 Keras到 Kubernetes (Keras to Kubernetes: The Journey of a Machine Learning Model to Production)-preview-1

買這商品的人也買了...

相關主題

商品描述

本書從實踐的角度,介紹瞭如何使用基於Python的Keras庫和TensorFlow框架開發機器學習模型和深度學習模型,以及如何使用Kubernetes將其部署到生產環境中。書中討論了許多流行的算法;展示瞭如何使用它們來構建系統;包含有大量註釋的代碼示例,以便讀者理解並重現這些示例;使用了一個深度學習模型的示例來讀取圖像,並對流行品牌的標識進行分類,然後將該模型部署在分佈式集群上,以處理大量的客戶端請求。附錄中提供了一些圖書和網站,這些參考資料涵蓋了本書沒有完全涵蓋的項目的細節。

作者簡介

達塔拉·拉奧(Dattaraj Rao) 目前擔任Persistent Systems公司的創新與研發架構師,並領導該公司的人工智能研究實驗室。曾任印度班加羅爾通用電氣公司(GE)的首席架構師,在GE工作了19年,通過GE獲得了11項專利,是GE認證的分析工程師。他曾主導運輸業務的分析和人工智能戰略,構建工業物聯網解決方案,推動預見性維護、機器視覺和數字孿生等技術成果的落地。

 

【譯者簡介】

崔艷榮,教授,博士,碩士生導師,長江大學電腦科學學院院長。主持和參與各級各類項目20餘項,發表論文30餘篇,其中被EI檢索8篇。主編21世紀高等學校規劃教材《物聯網概論》。輔導學生參加全國電腦模擬大賽,獲全國一等獎1項、二等獎1項、三等獎2項。

 

詹煒,博士,副教授,長江大學電腦科學學院副院長。主要從事圖像深度學習算法、電腦視覺技術和智能多目標優化算法3個方向的應用研究工作;主持並完成省級項目2項,廳局級項目2項,發表科研論文20餘篇。

 

楊慧明,就讀於長江大學電腦科學學院。擅長機器學習與數字圖像處理,目前深入學習編譯器和程序動態運行機制。

 

目錄大綱

第 1章 大數據和人工智能 1
1.1 數據是新石油,人工智能是新電力 1
1.1.1 機器的崛起 3
1.1.2 處理能力的指數級增長 4
1.1.3 一種新的分析方法 4
1.1.4 是什麽讓人工智能如此特別 5
1.2 人工智能的應用 6
1.2.1 基於數據構建分析類型 9
1.2.2 分析類型:基於應用程序 10
1.2.3 分析類型:基於決策邏輯 14
1.2.4 構建分析驅動的系統 15
1.3 小結 17

第 2章 機器學習 18
2.1 在數據中尋找模式 18
2.2 炫酷的機器學習社區 20
2.3 機器學習技術的類型 21
2.3.1 無監督機器學習 21
2.3.2 監督機器學習 22
2.3.3 強化學習 24
2.4 解決簡單的問題 24
2.4.1 無監督學習 26
2.4.2 監督學習:線性回歸 29
2.4.3 梯度下降優化 31
2.4.4 梯度下降在線性回歸中的應用 33
2.4.5 監督學習:分類 34
2.5 分析更大的數據集 39
2.6 分類方法的比較 43
2.7 偏置與方差:欠擬合與過擬合 46
2.8 強化學習 51
2.8.1 基於模型的強化學習 52
2.8.2 無模型強化學習 53
2.9 小結 58

第3章 處理非結構化數據 59
3.1 結構化數據與非結構化數據 59
3.2 理解圖像 61
3.3 處理視頻 74
3.4 處理文本數據 75
3.4.1 自然語言處理 76
3.4.2 詞嵌入 82
3.5 聽聲音 87
3.6 小結 92

第4章 使用Keras 進行深度學習 93
4.1 處理非結構化數據 93
4.1.1 神經網絡 93
4.1.2 反向傳播和梯度下降 98
4.1.3 批量梯度下降與隨機梯度下降 99
4.1.4 神經網絡架構 100
4.2 TensorFlow和Keras 100
4.3 偏置與方差:欠擬合與過擬合 105
4.4 小結 107

第5章 高級深度學習 108
5.1 深度學習模型的崛起 108
5.2 新型網絡層 109
5.2.1 捲積層 109
5.2.2 池化層 111
5.2.3 dropout層 111
5.2.4 批歸一化層 111
5.3 構建時尚商品圖像分類的深度網絡 112
5.4 捲積神經網絡架構和超參數 118
5.5 使用預訓練的VGG 模型進行預測 120
5.6 數據擴充和遷移學習 123
5.7 真實的分類問題:百事可樂與可口可樂 124
5.8 遞歸神經網絡 133
5.9 小結 138

第6章 前沿深度學習項目 140
6.1 神經風格遷移 140
6.2 使用人工智能生成圖像 150
6.3 利用自編碼器進行信用卡欺詐檢測 156
6.4 小結 165

第7章 現代軟件世界中的人工智能 166
7.1 快速審視現代軟件需求 166
7.2 人工智能如何適應現代軟件開發 168
7.3 簡單的Web應用程序 169
7.4 雲計算的興起 170
7.5 容器和CaaS 174
7.6 Kubernetes:基礎架構問題的CaaS解決方案 177
7.7 小結 183

第8章 將人工智能模型部署為微服務 184
8.1 用Docker和Kubernetes構建簡單的微服務 184
8.2 將人工智能添加到應用程序中 188
8.3 將應用程序打包為容器 192
8.4 將Docker鏡像推送到存儲庫 197
8.5 將應用程序作為微服務部署在Kubernetes中 197
8.6 小結 199

第9章 機器學習開發生命周期 200
9.1 機器學習模型生命周期 200
9.1.1 步驟1:定義問題,建立基本事實 201
9.1.2 步驟2:收集、清洗和準備數據 202
9.1.3 步驟3:構建和訓練模型 204
9.1.4 步驟4:驗證模型,調整超參數 206
9.1.5 步驟5:部署到生產中 207
9.1.6 反饋和模型更新 208
9.2 邊緣設備上的部署 208
9.3 小結 217

第 10章 機器學習平臺 218
10.1 機器學習平臺關註點 218
10.1.1 數據獲取 219
10.1.2 數據清洗 222
10.1.3 分析用戶界面 222
10.1.4 模型構建 226
10.1.5 大規模訓練 227
10.1.6 超參數調整 227
10.1.7 自動化部署 229
10.1.8 日誌記錄和監控 234
10.2 將機器學習平臺整合在一起 235
10.3 小結 235
10.4 最後的話 236
附錄A 237