機器學習應用系統設計
有賀康顕, 中山心太, 西林孝
- 出版商: 中國電力出版社
- 出版日期: 2018-12-01
- 定價: $408
- 售價: 7.9 折 $322
- 語言: 簡體中文
- 裝訂: 平裝
- ISBN: 7519826201
- ISBN-13: 9787519826208
-
相關分類:
Machine Learning
立即出貨
買這商品的人也買了...
簡體館年度書展|現貨2書79折3書75折 詳見活動內容 »
-
85折
$806Linux x64 匯編語言編程 -
VIP 95折
MCP 極簡開發 : 輕鬆打造高效智能體$479$455 -
VIP 95折
硬件系統模糊測試:技術揭秘與案例剖析$419$398 -
85折
$245生成式視覺模型原理與實踐 -
87折
$459AI大模型:賦能通信產業 -
85折
$347科學預測——預見科學之美 -
85折
$254Processing創意編程入門:從編程原理到項目案例 -
87折
$360高薪Offer 簡歷、面試、談薪完全攻略 -
79折
$469GitHub Copilot 編程指南 -
VIP 95折
C#核心編程200例(視頻課程+全套源程序)$648$616 -
VIP 95折
SAAS + AI 架構實戰:業務解析、架構設計、AI 應用$708$673 -
VIP 95折
深入淺出 Docker, 2/e$419$398 -
VIP 95折
Unity 特效制作:Shader Graph 案例精講$774$735 -
79折
$275零基礎玩轉國產大模型DeepSeek -
VIP 95折
人工智能大模型:機器學習基礎$774$735 -
VIP 95折
RAG 極簡入門:原理與實踐$419$398 -
VIP 95折
大模型實戰 : 從零實現 RAG 與 Agent 系統$419$398 -
85折
$296算法趣學(第2版) -
85折
$301大模型理論與實踐——打造行業智能助手 -
VIP 95折
生成式人工智能 (基於 PyTorch 實現)$599$569 -
VIP 95折
Java 學習筆記, 6/e$839$797 -
85折
$407ZBrush遊戲角色設計(第2版) -
85折
$454軟件架構決策之道:軟件架構決策的原則和方法 -
79折
$374DeepSeek + Dify + Ollama 全棧 AI 開發實戰 (前端本地部署到大模型集成訓練) -
85折
$505從程式設計師到架構師:大數據技術金融級全場景應用實戰
簡體館年度書展|現貨2書79折3書75折 詳見活動內容 »
-
85折
$806Linux x64 匯編語言編程 -
VIP 95折
MCP 極簡開發 : 輕鬆打造高效智能體$479$455 -
VIP 95折
硬件系統模糊測試:技術揭秘與案例剖析$419$398 -
85折
$245生成式視覺模型原理與實踐 -
87折
$459AI大模型:賦能通信產業 -
85折
$347科學預測——預見科學之美 -
85折
$254Processing創意編程入門:從編程原理到項目案例 -
87折
$360高薪Offer 簡歷、面試、談薪完全攻略 -
79折
$469GitHub Copilot 編程指南 -
VIP 95折
C#核心編程200例(視頻課程+全套源程序)$648$616 -
VIP 95折
SAAS + AI 架構實戰:業務解析、架構設計、AI 應用$708$673 -
VIP 95折
深入淺出 Docker, 2/e$419$398 -
VIP 95折
Unity 特效制作:Shader Graph 案例精講$774$735 -
79折
$275零基礎玩轉國產大模型DeepSeek -
VIP 95折
人工智能大模型:機器學習基礎$774$735 -
VIP 95折
RAG 極簡入門:原理與實踐$419$398 -
VIP 95折
大模型實戰 : 從零實現 RAG 與 Agent 系統$419$398 -
85折
$296算法趣學(第2版) -
85折
$301大模型理論與實踐——打造行業智能助手 -
VIP 95折
生成式人工智能 (基於 PyTorch 實現)$599$569 -
VIP 95折
Java 學習筆記, 6/e$839$797 -
85折
$407ZBrush遊戲角色設計(第2版) -
85折
$454軟件架構決策之道:軟件架構決策的原則和方法 -
79折
$374DeepSeek + Dify + Ollama 全棧 AI 開發實戰 (前端本地部署到大模型集成訓練) -
85折
$505從程式設計師到架構師:大數據技術金融級全場景應用實戰
相關主題
商品描述
本書共分9章,主要內容有:章總結機器學習項目的推進流程。第2章介紹機器學習的主要功能和各種算法。第3章以垃圾郵件判別為例,介紹對學習完成後的預測模型進行離線評價的方法。第4章梳理在計算機系統裡集成機器學習功能的模式,同時介紹機器學習基礎的日誌設計。第5章介紹機器學習分類任務裡的正確答案數據的獲取方法。第6章介紹用於驗證實施方案是否真正有效的統計鑑定、因果推理,以及A/B試驗等方法。第3章是預測模型的離線驗證,本章則介紹實施過程中的實時驗證。第7章以電影推薦為例,學習推薦預測系統的開發實現案例。第8章闡述搜索式分析過程及分析報告,結合在章的機器學習流程中出現的“不執行機器學習的例子”,介紹如何整理實際分析結果的相關心得。第9章採用所謂UpliftModeling方法學習更有效的營銷方法
