圖解向量與解析幾何

吳作樂、吳秉翰

  • 出版商: 五南
  • 出版日期: 2017-10-31
  • 定價: $300
  • 售價: 9.5$285
  • 貴賓價: 9.0$270
  • 語言: 繁體中文
  • 頁數: 248
  • ISBN: 9571194182
  • ISBN-13: 9789571194189
  • 相關分類: 物理學 Physics
  • 立即出貨 (庫存=1)

買這商品的人也買了...

相關主題

商品描述

本書是為了解決一段人對向量的大量疑惑。因為從物理的功、力矩定義導入向量內積、外積概念,令人誤會沒有這兩個觀念就不能將解析幾何,由二度推到三度空間。及為什麼能用物理概念推論數學?本書詳細說明數學及物理的向量歷史,認知到解析幾何根本不需要「向量」概念,就能夠推廣,只是相當繁瑣。並理解是數學支撐物理,而不是物理來說明數學。
  作者之一多年來在求學與教學深受上述問題困擾,因為用物理說明數學會導致學生不理解、造成教學困難。兩位作者都認為死背定義的數學學習,或說不清楚的數學,根本不配稱為好的數學教育。因為數學是一門可以被說清楚的演繹邏輯,不能說清楚的部分越少越好。想要保持數學直覺性與創意性,適當的途徑是研究這門學科的歷史和現狀。因此本書盡可能釐清內積、外積在數學與物理的混亂。希望學生不再有困惑,心理不再存在疙瘩,並了解在自然科學中,數學具有不可理喻的有效性。 

目錄大綱

前言
第1章 疑惑與歷史
1-1 向量常見的疑惑 
1-2 數學與物理的關係 
1-3 數學的歷史 
1-4 太多新的定義 
1-5 向量的教學順序令人困惑 
第2章 傳統解析幾何
2-1 笛卡兒的平面座標 
2-2 平面座標系的直線方程式(1):由來 
2-3 平面座標系的直線方程式(2):斜截式 
2-4 平面座標系的直線方程式(3):點斜式、截距式 
2-5 平面座標系的直線方程式(4):兩點式 
2-6 平面座標系的直線方程式(5):參數式 
2-7 空間座標系的平面方程式(1):由來 
2-8 空間座標系的平面方程式(2):表示方法 
2-9 空間座標系的直線方程式 
2-10 平面座標系的兩直線夾角 
2-11 空間座標系的兩直線夾角 
2-12 平面座標系、空間座標系的距離問題 
2-13 平面座標系的點到線的距離(1):畢氏定理 
2-14 平面座標系的點到線的距離(2):三角函數 
2-15 平面座標系的點到線的距離(3):參數式 
2-16 空間座標系的點到線的距離、兩平行線的距離 
2-17 空間座標系的點到面的距離 
2-18 各個平行情況的距離 
2-19 空間座標系的兩歪斜線的距離 
2-20 空間座標系的兩平面相交直線方程式 
2-21 空間座標系的兩平面夾角 
2-22 整合此章的數學式 
2-23 參數式的起源:拋物線 
第3章 行列式
3-1 解聯立方程式:兩變數 
3-2 解聯立方程組:三變數 
3-3 行列式的運算(1):二階 
3-4 行列式的運算(2):三階 
3-5 克拉碼行列式求平面方程式 
3-6 二階行列式與面積關係 
3-7 三階行列式與體積關係 
3-8 變形的二階行列式(測量員公式)求多邊形面積(1) 
3-9 變形的二階行列式(測量員公式)求多邊形面積(2) 
第4章 高斯列運算
4-1 加減消去法與列運算(1):兩變數 
4-2 加減消去法與列運算(2):三變數 
4-3 高斯列運算求平面方程式 
第5章 向量在物理的意義
5-1 向量在物理的意義 
5-2 功與內積 
5-3 力矩與外積 
5-4 向量的定義 
5-5 向量的基礎計算(1) 
5-6 向量的基礎計算(2) 
5-7 向量的基礎計算(3) 
5-8 正射影與正射影長 
5-9 向量與藝術:投影幾何 
5-10 向量數學式總結 
第6章 向量改變數學的教法
6-1 數學的夾角與內積 
6-2 向量與平面上的直線方程式關係 
6-3 數學的平面方程式係數與外積(1):解析幾何方法 
6-4 數學的平面方程式係數與外積(2):法向量與力矩 
6-5 數學的平面方程式係數與外積(3):法向量怎麼求 
6-6 利用向量求平面上點到線的距離 
6-7 利用向量求空間中點到平面的距離 
6-8 利用向量表示傾斜程度(斜率) 
6-9 向量與柯西不等式(1):如何證明 
6-10 向量與柯西不等式(2):柯西不等式與配方法的關係 
6-11 向量與柯西不等式(3):如何記憶 
6-12 利用向量與二階行列式,求平面座標系的三角形面積 
6-13 利用向量與三階行列式,求平面座標系三角形面積、及兩向量張出的平行四邊形面積 
6-14 利用向量與二階行列式,求空間座標系的三角形面積、及兩向量張出的平行四邊形面積 
6-15 空間座標系的「兩向量張出的平行四邊形面積值」等於「兩向量外積後的公垂向量長度值」 
6-16 三角錐體積與行列式(1):拉格朗日 
6-17 三角椎體積與行列式(2):向量方法 
6-18 空間座標系的三向量張出平行六面體體積 
6-19 空間座標系的點到線的距離(1) 
6-20 空間座標系的點到線的距離(2) 
6-21 歪斜線的向量討論(1) 
6-22 歪斜線的向量討論(2) 
6-23 三垂線定理的討論 
6-24 向量方法證明畢氏定理、三角不等式 
6-25 傳統解析幾何的分點公式與向量的三點共線定理 
6-26 計算三角形重心 
6-27 計算三角形內心(1):向量方法 
6-28 計算三角形內心(2):傳統解析幾何 
6-29 外心、垂心的向量性質 
6-30 兩面角與兩平面交線的向量求法 
6-31 二度空間的角平分線與三度空間的角平分面 
6-32 三度空間的角平分線 
第7章 向量從物理到數學,再回到物理
7-1 物理數學家與數學物理家 
7-2 向量對數學的意義 
7-3 數學與物理互相幫助 
第8章 矩陣
8.1 動畫的由來(1) 
8-2 動畫的由來(2) 
8-3 動畫的由來(3) 
8.4 矩陣的由來 
8-5 矩陣的運算(1):二階矩陣PART1 
8-6 矩陣的運算(2):二階矩陣PART2 
8-7 矩陣的運算(3):二階矩陣PART3 
8-8 矩陣的運算(4):三階矩陣 
8-9 矩陣的運算(5):二階矩陣的反矩陣的由來 
8-10 矩陣的運算(6):三階矩陣的反矩陣的由來與記法 
8-11 矩陣的應用(1):轉移矩陣的概念 
8-12 矩陣的應用(2):如何求轉移矩陣 
8-13 矩陣的應用(3):血型的轉移矩陣 
第9章 總結
9-1 相關歷史 
9-2 結論 
附錄
附錄1.為什麼負負得正呢? 
附錄2.為什麼阿拉伯數字會長這樣? 
附錄3.配方法與雙重配方法 
附錄4.相關聯結