買這商品的人也買了...
-
$880$836 -
$1,810$1,720 -
$300$270 -
$1,000$950 -
$720$706 -
$650$507 -
$690$587 -
$690$587 -
$900$810 -
$890$801 -
$680$612 -
$550$429 -
$500$390 -
$450$405 -
$704Python 和 NLTK 自然語言處理 (Natural Language Processing: Python and NLTK)
-
$450$405 -
$920$828 -
$660$515 -
$650$507
相關主題
商品描述
本書特色
◎從存活分析基礎教起、整體架構明確,即使是新手亦能快速掌握要領。
◎使用新版SPSS V25操作,並附上練習題,促進研究者學習效率。
◎完整且詳實的範例解析,幫助您觸類旁通,讓報告、論文大升級!
◎存活分析與ROC分析適用在財務金融、會計、生產管理、生物醫學、行銷管理、教學心理、風險管理、工業工程、土木、航運管理、公共行政、社會學、法律學、經濟學等領域。
隨書附贈資料檔光碟
本書簡介
存活分析和ROC曲線分析是在臨床醫學研究時,不可或缺的分析工具之一。而存活分析的實驗目標不只是要研究事件是否發生,更要求出是何時發生,故「時間」扮演相當重要的角色,而且可以提供較多的訊息,進而提升分析之有效性!除了探討生存機率外,存活分析也常運用在不同領域中,例如:電子設備的壽命、投資決策的時間、企業存活時間、顧客忠誠度都是其研究範圍。
本書介紹的存活分析與ROC分析內容,包含生物醫學統計、存活資料描述性統計、Cox存活分析入門(半參數)Cox迴歸、層次迴歸、Cox模型適當性的評估、Cox模型開發的過程、時間相依型共變數、流行病學統計法。透過統計軟體SPSS探討,結合理論、方法與統計引導,從使用者角度整理編排,讓學習和研究過程更得心應手。
作者簡介
張紹勳
學歷:國立政治大學資訊管理博士
現任:國立彰化師大專任教授
經歷:致理技術專任副教授
林秀娟
學歷:國立臺灣師範大學教育心理研究所碩士
現職:臺北市立成功高中專任教師
目錄大綱
自 序
Chapter01 生物醫學統計:流行病學的研究法
1-1 事件發生時間(time-to-event) 的資料
1-2 生物醫學之模型
1-3 Cox 迴歸式(hazard ratio)vs. 邏輯斯迴歸式(odds ratio) 的比較
1-3-1 Cox 迴歸式(hazard ratio):迴歸係數的涵意
1-3-2a 邏輯斯迴歸式(odds ratio)
1-3-2b 邏輯斯迴歸式(odds ratio):迴歸係數的解說
1-4 醫學實驗設計種類、重要性
1-4-1 流行病學的研究法:實驗性vs. 觀察性
1-4-2 統計與實驗設計功能之對應關係
1-4-3 OLS 迴歸模型之重點整理
1-4-4 單變量vs. 多變量統計
1-5 自定SPSS 操作介面
Chapter02 存活資料描述性統計:Kaplan-Meier 估計、log-rank 檢定
2-1 存活資料(survival data) 描述性統計:Kaplan-Meier 估計
2-1-1 Kaplan-Meier 估計:無「case-control」組
2-1-2 Kaplan-Meier 存活曲線及95% 信賴區間
2-2 存活資料:Kaplan-Meier 存活函數的百分位(quantile)
2-2-1 Kaplan-Meier 估計:存活時間的百分位數:不分「case-control」組
2-2-2 Kaplan-Meier 估計存活機率:分「男-女」組
2-3 Cox 迴歸假定的檢定:log-rank 檢定、Wilcoxon 檢定、Tarone-Ware 檢定
2-3-1 對數等級(log-rank) 檢定、Breslow/Wilcoxon 檢定:「男-女」存活(曲線)有差嗎?
2-3-2 對數等級檢定(log-rank test):「年齡層」存活( 曲線) 率有差嗎?
2-3-3 對數等級檢定(log-rank test):汽車鍍膜對防鏽有效嗎?
Chapter03 Cox 存活分析入門:臨床研究最重要統計法
3-1 存活分析(survival analysis) 介紹
3-1-1 存活分析之定義
3-1-2 為何存活分析是臨床研究最重要的統計法?
3-1-3 存活分析之三種研究目標
3-1-4 存活分析之研究議題
3-1-5 設限資料(censored data)
3-1-6 存活時間T 之機率函數
3-1-7 Cox 存活分析vs. logit 模型/probit 模型的差異
3-2 SPSS 存活分析/繪圖表之對應指令
3-3 存活分析範例:除草有助幼苗存活率嗎?
3-3-1a 生命表(life table)
3-3-1b 生命表(life table):肝病死亡(survival table 指令)
3-3-2 Cox 迴歸假定:Mantel-Haenszel 檢定
3-3-3 Cox proportional hazard 迴歸:除草有助幼苗存活率嗎?(coxreg 指令)
3-4 Cox 比例危險模型(proportional hazards model)(coxreg 指令)
3-4-1 f(t) 機率密度函數、S(t) 存活函數、h(t) 危險函數、H(t)累積危險函數
3-4-2 Cox 比例危險模型之迴歸式解說
3-4-3 危險函數的估計(hazard function)
3-4-4 Cox 模型之相對風險(relative risk, RR)
3-5 Kaplan-Meier 存活模型
3-5-1 Kaplan-Meier 估計法(product-limit Estimate)
3-5-2 存活分析法:Kaplan-Meier vs. 韋伯分布(參數存活模型)
3-5-3 Kaplan-Meier 存活函數(km指令)
3-6 參數存活分析( 偏態之依變數有六種分布可搭二種脆弱模型)
Chapter04 (半參數)Cox 迴歸:臨床研究最重要統計法(coxreg 指令)
4-1 Cox 比例危險模型(proportional hazard model, PHM)(coxreg 指令)
4-1-1 Cox 迴歸:實驗處理有療效嗎 + 四個共變數(危險因子)(coxreg 指令)
4-1-2 Cox 迴歸:(無實驗處理) 肝癌有二個危險因子(coxreg 指令)
Chapter05 層次(hierarchical) 迴歸:Cox 模型(coxreg 指令)
5-1 層次(hierarchical) 迴歸:比例危險Cox 迴歸(proportional hazards)
5-1-1 proportional hazards 之Cox 迴歸:解釋變數分虛擬變數(gender、case-control) 及連續變數age 有三個方式(coxreg 指令)
5-2 層次(hierarchical) 線性迴歸
5-2-1 層次迴歸(hierarchical regression) 重點性
5-2-2 層次迴歸的概念
5-2-3 層次迴歸分析:寵物越多可增加幸福感嗎?(regression 指令)
5-3 層次(hierarchical) 迴歸:比例危險Cox 迴歸
5-3-1 層次(hierarchical)Cox 迴歸:癌症的危險因子有那些?(coxreg 指令)
5-3-2 層次(hierarchical)Cox 迴歸(missing value):二種藥效在年齡的交互作用?(coxreg 指令)
5-3-3 層次(hierarchical)Cox 迴歸:年齡及性別對肝病的主要效果及交互作用?(coxreg 指令)
5-3-4 層次(hierarchical) 型Cox 迴歸:二種激素(hormone) 及淋巴結(nodes)
對手術後復發的主要效果及交互作用?(coxreg 指令)
Chapter 06 Cox 模型適當性的評估(assessment of model adequacy)
6-1 比例風險假定的三種檢定之一:Schoenfeld residuals 法6-2 Cox 模型的診斷:離群值(dfbet值)
6-3 Cox 模型的診斷:likelihood displacement 對martingale residuals (coxreg、matrix指令)
Chapter07 cox模型開發的過程(model development)
7-1 單變量vs. 多變量的建模過程:Cox 迴歸(coxreg 指令)
7-2 共變數係數調整法:fractional polynomial regression (coxreg 指令)
Chapter08 時間相依型共變數(time-dependent covariate)的Cox 迴歸
8-1 時間相依型共變數的Cox 迴歸
8-2 時間相依型共變數的原理
8-3 時間相依型共變數的Cox 迴歸分析(coxreg 指令)
Chapter09 流行病學統計法:ROC 曲線面積來對比二個邏輯斯迴歸誰優?
9-1 流行病學(epidemiology)
9-1-1 流行病學之研究法:觀察法及實驗法
9-1-2a 觀察法:描述性vs. 分析性研究
9-1-2b 觀察法:前瞻性vs. 回溯性研究;縱貫面vs. 橫斷面研究
9-1-3 實驗法
9-1-4 流行病學之ROC 法的應用領域
9-1-5 臨床試驗常用術語解釋
9-1-6 頻率(frequency) 的指標:生命統計測量值
9-2 接受者作業特徵(receiver operating characteristic, ROC) 分析:判別檢驗工具的準確性
9-2-1 流行病統計法:ROC 緣由
9-2-2 ROC 曲線之原理:2×2 混淆矩陣
9-2-3a Type I 誤差α 及Type II 誤差β:ROC 圖切斷點的由來
9-2-3b 評估不同篩檢工具之分類準確性(accuracy):ROC 圖
9-2-4 篩檢工具的績效(performance):同一篩檢工具不同檢驗值切斷點的選擇
9-2-5 ROC 法之分析步驟
9-2-6 參數的ROC
9-3 ROC 曲線面積來對比二個邏輯斯迴歸誰優?(roc、logistic regression 指令)
9-3-1 如何提升ROC 研究設計之品質
9-3-2 二個logistic 迴歸誰優?(ROC、logistic regression 指令)
參考文獻