機器學習設計模式 (Machine Learning Design Patterns: Solutions to Common Challenges in Data Preparation, Model Building, and Mlops)
Valliappa Lakshmanan, Sara Robinson, Michael Munn 著 賴屹民 譯
- 出版商: 歐萊禮
- 出版日期: 2021-05-26
- 定價: $680
- 售價: 7.9 折 $537
- 語言: 繁體中文
- 頁數: 400
- 裝訂: 平裝
- ISBN: 9865027887
- ISBN-13: 9789865027889
-
相關分類:
Machine Learning、Design Pattern
- 此書翻譯自: Machine Learning Design Patterns: Solutions to Common Challenges in Data Preparation, Model Building, and Mlops (Paperback)
立即出貨 (庫存 > 10)
買這商品的人也買了...
-
機器學習|工作現場的評估、導入與實作$580$458 -
重構|改善既有程式的設計, 2/e (繁中平裝版)(Refactoring: Improving The Design of Existing Code, 2/e)$800$632 -
PyTorch 自然語言處理|以深度學習建立語言應用程式 (Natural Language Processing with PyTorch)$580$458 -
機器學習的數學基礎 : AI、深度學習打底必讀$580$458 -
$551深度學習推薦系統 -
精通機器學習|使用 Scikit-Learn , Keras 與 TensorFlow, 2/e (Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2/e)$1,200$948 -
The Pragmatic Programmer 20週年紀念版 (The Pragmatic Programmer, 20th Anniversary Edition)$680$537 -
機器學習|特徵工程 (Feature Engineering for Machine Learning)$520$411 -
Python for DevOps|學習精準有效的自動化 (Python for Devops: Learn Ruthlessly Effective Automation)$780$616 -
Effective Python 中文版|寫出良好 Python 程式的 90個具體做法, 2/e (Effective Python: 90 Specific Ways to Write Better Python, 2/e)$580$493 -
高效能 Python 程式設計, 2/e (High Performance Python: Practical Performant Programming for Humans, 2/e)$780$616 -
自然語言處理最佳實務|全面建構真正的 NLP 系統 (Practical Natural Language Processing: A Comprehensive Guide to Building Real-World Nlp Systems)$780$616 -
軟體架構原理|工程方法 (Fundamentals of Software Architecture: A Comprehensive Guide to Patterns, Characteristics, and Best Practices)$680$537 -
Deep Learning 3|用 Python 進行深度學習框架的開發實作$780$616 -
Reinforcement Learning|強化學習深度解析 (繁體中文版) (Reinforcement Learning: An Introduction, 2/e)$1,200$948 -
從程式員到 AI 專家|寫給程式員的人工智慧與機器學習指南 (AI and Machine Learning for Coders: A Programmer's Guide to Artificial Intelligence)$680$537 -
經理人之道:技術領袖航向成長與改變的參考指南 (The Manager's Path: A Guide for Tech Leaders Navigating Growth and Change)$480$379 -
打造機器學習應用|從構想邁向產品 (Building Machine Learning Powered Applications)$580$458 -
大規模重構|奪回源碼庫的控制權 (Refactoring at Scale: Regaining Control of Your Codebase)$580$458 -
資料密集型應用系統設計 (Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems)$980$774 -
資料科學的建模基礎 : 別急著 coding!你知道模型的陷阱嗎?$599$509 -
自學機器學習 - 上 Kaggle 接軌世界,成為資料科學家$680$578 -
深度學習實務應用|雲端、行動與邊緣裝置 (Practical Deep Learning for Cloud, Mobile and Edge)$880$695 -
AI 開發的機器學習系統設計模式$620$490 -
設計機器學習系統|迭代開發生產環境就緒的 ML 程式 (Designing Machine Learning Systems: An Iterative Process for Production-Ready Applications)$780$616
商品描述
資料準備、模型建構與MLOps常見挑戰的解決方案
「本書提供了豐富的範例,如果你是資料科學家或ML工程師,而且想要了解如何使用行之有效的解決方案來處理複雜的ML問題,你一定要看這本書。」
—David Kanter
ML Commons執行長
「如果你想在建構ML解決方案的過程中減少傷害、碰撞和磨擦,Lak、Sara和Michael可以在背後支持你。」
—Will Grannis
Google Cloud CTO Office常務董事
本書的設計模式介紹常見的機器學習最佳實踐法和解決方案。作者是三位Google工程師,他們整理了一些經過驗證的方法,協助資料科學家匯整ML程序中常見的問題,用這些設計模式來將數百位專家的經驗整理成直觀、平易近人的建議。
這本書詳細地解釋30種模式,介紹資料和問題的表示法、作業化、可重複性、再現性、靈活性、可解釋性和公平性,每一種模式都包含問題描述、各種可能的解決方案,以及視情況選擇最佳技術的建議。
你將學會:
‧在訓練、評估和部署ML模型時,認出常見的挑戰並處理它們
‧表示各種ML模型的資料,包括embedding、feature cross(特徵交叉)等
‧為具體的問題選擇適合的模型
‧使用檢查點、發布策略和超參數調整來建立穩健的訓練循環
‧部署可擴展的ML系統,以便用新資料來進行重新訓練和更新
‧向關係人解釋模型為何做出那些預測,以確保模型公平地對待用戶
‧提高模型的準確性、再現性和復原力
作者簡介
Valliappa(Lak) Lakshmanan 是Google Cloud的資料分析和AI解決方案的全球主管
Sara Robinson 是Google Cloud團隊的開發技術推廣工程師,工作重點是機器學習
Michael Munn 是Google的ML解決方案工程師,負責協助顧客設計、實作與部署機器學習模型
目錄大綱
前言
第一章 為何需要機器學習設計模式
第二章 資料表示
第三章 問題表示
第四章 模型訓練
第五章 提供具復原力的服務
第六章 再現性
第七章 Responsible AI
第八章 連接模式
索引









