擴散模型:生成式 AI 模型的理論、應用與代碼實踐
楊靈 等
- 出版商: 電子工業
- 出版日期: 2023-08-01
- 定價: $534
- 售價: 7.9 折 $422
- 語言: 簡體中文
- 頁數: 208
- ISBN: 712145985X
- ISBN-13: 9787121459856
-
相關分類:
DeepLearning
-
相關翻譯:
Generative AI - Diffusion Model 擴散模型現場實作精解 (繁中版)
立即出貨
買這商品的人也買了...
-
深度學習 (Deep Learning)(繁體中文版)$1,200$1,020 -
GAN 對抗式生成網路 (GANs in Action: Deep learning with Generative Adversarial Networks)$750$593 -
深度強化式學習 (Deep Reinforcement Learning in Action)$1,000$790 -
Deep Learning 3|用 Python 進行深度學習框架的開發實作$780$616 -
核心開發者親授!PyTorch 深度學習攻略 (Deep Learning with Pytorch)$1,000$850 -
深度學習的 16 堂課:CNN + RNN + GAN + DQN + DRL, 看得懂、學得會、做得出! (Deep Learning Illustrated: A Visual, Interactive Guide to Artificial Intelligence)$620$489 -
AI 開發的機器學習系統設計模式$620$490 -
駕馭 ChatGPT 4: 探索 Azure OpenAI 與 Cognitive Service for Language 開發實踐 (使用.NET 與 Node.js)$650$507 -
$706深入理解電腦視覺:在邊緣端構建高效的目標檢測應用 -
擴散模型從原理到實戰$479$455 -
$458動手學機器學習 -
$551深度生成模型(全彩) -
Deep Learning 4|用 Python 進行強化學習的開發實作$680$537 -
$356搜尋演算法:人工智能如何尋找最優 -
$398Tableau 數據可視化分析從新手到高手 -
$469多模態深度學習技術基礎 -
$422從零開始大模型開發與微調:基於 PyTorch 與 ChatGLM -
最強 AI 投資分析:打造自己的股市顧問機器人,股票趨勢分析×年報解讀×選股推薦×風險管理$750$593 -
$556大規模語言模型:從理論到實踐 -
完全圖解人工智慧:零基礎也OK!從NLP、圖像辨識到生成模型,現代人必修的53堂AI課$480$379 -
跟 NVIDIA 學深度學習!從基本神經網路到 ......、GPT、BERT...,紮穩機器視覺與大型語言模型 (LLM) 的建模基礎$880$748 -
Generative AI - Diffusion Model 擴散模型現場實作精解$720$569 -
新一代 Keras 3.x 重磅回歸:跨 TensorFlow 與 PyTorch 建構 Transformer、CNN、RNN、LSTM 深度學習模型$750$593 -
$421ChatGLM3 大模型本地化部署、應用開發與微調 -
ChatGPT 4 Omni 領軍 - Copilot、Claude、Gemini、36組GPT ...全面探索生成式AI的無限可能(過版書)$780$616
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$576 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
本書全面介紹了擴散模型這種新興的深度生成模型在各個領域的應用,其內容包括AIGC與相關技術、擴散模型基礎、擴散模型的高效採樣、擴散模型的似然最大化、將擴散模型應用於具有特殊結構的數據、擴散模型與其他生成模型的關聯、擴散模型的應用、擴散模型的未來等。本書旨在提供一個情景,幫助讀者深入瞭解擴散模型,確定擴散模型的關鍵研究領域,以及適合未來進一步探索的研究領域。本書適合高等院校電腦科學、人工智能和醫學、生物學等交叉學科專業的師生,以及相關人工智能應用程序的開發人員閱讀。
作者簡介
崔斌,北京大學電腦學院教授、博士生導師、北京大學電腦學院副院長。擔任中國電腦學會數據庫專委會副主任,VLDB理事會理事,IEEETKDE、VLDB Journal、DAPD等國際期刊編委。中國電腦學會傑出會員、IEEE高級會員、ACM會員,2016年入選教育部長江學者特聘教授。
目錄大綱
第1 章 AIGC 與相關技術
1.1 AIGC 簡介
1.2 擴散模型簡介
第2 章 擴散模型基礎
2.1 去噪擴散概率模型
2.2 基於分數的生成模型
2.3 隨機微分方程
2.4 擴散模型的架構
第3 章 擴散模型的高效採樣
3.1 微分方程
3.2 確定性採樣
3.2.1 SDE 求解器
3.2.2 ODE 求解器
3.3 基於學習的採樣
3.3.1 離散方式
3.3.2 截斷擴散
3.3.3 知識蒸餾
第4 章 擴散模型的似然最大化
4.1 似然函數最大化
4.2 加噪策略優化
4.3 逆向方差學習
4.4 精確的對數似然估計
第5 章 將擴散模型應用於具有特殊結構的數據
5.1 離散數據
5.2 具有不變性結構的數據
5.3 具有流形結構的數據
5.3.1 流形已知
5.3.2 流形未知
第6 章 擴散模型與其他生成模型的關聯
6.1 變分自編碼器與擴散模型
6.2 生成對抗網絡與擴散模型
6.3 歸一化流與擴散模型
6.4 自回歸模型與擴散模型
6.5 基於能量的模型與擴散模型
第7 章 擴散模型的應用
7.1 無條件擴散模型與條件擴散模型
7.2 電腦視覺
7.2.1 圖像超分辨率、圖像修復和圖像翻譯
7.2.2 語義分割
7.2.3 視頻生成
7.2.4 點雲補全和點雲生成
7.2.5 異常檢測
7.3 自然語言處理
7.4 時間數據建模
7.4.1 時間序列插補
7.4.2 時間序列預測
7.5 多模態學習
7.5.1 文本到圖像的生成
7.5.2 文本到音頻的生成
7.5.3 場景圖到圖像的生成
7.5.4 文本到3D 內容的生成
7.5.5 文本到人體動作的生成
7.5.6 文本到視頻的生成
7.6 魯棒學習
7.7 跨學科應用
7.7.1 人工智能藥物研發
7.7.2 醫學影像
第8 章 擴散模型的未來——GPT 及大模型
8.1 預訓練技術簡介
8.1.1 生成式預訓練和對比式預測練
8.1.2 並行訓練技術
8.1.3 微調技術
8.2 GPT 及大模型
8.2.1 GPT-1
8.2.2 GPT-2
8.2.3 GPT-3 和大模型
8.2.4 InstructGPT 和ChatGPT
8.2.5 Visual ChatGPT
8.3 基於GPT 及大模型的擴散模型
8.3.1 算法研究
8.3.2 應用範式
相關資料說明
