電腦視覺 — 基於 OpenCV 與 TensorFlow 的深度學習方法
餘海林、翟中華
- 出版商: 清華大學
- 出版日期: 2021-04-01
- 定價: $414
- 售價: 8.5 折 $352
- 語言: 簡體中文
- 頁數: 212
- 裝訂: 平裝
- ISBN: 7302567433
- ISBN-13: 9787302567431
-
相關分類:
Computer Vision
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
演算法之美:隱藏在資料結構背後的原理 (C++版)$650$507 -
$414圖像局部特徵檢驗和描述 -
$299Arduino 編程從零開始 : 使用 C 和 C++ (第2版) -
$755電腦視覺度量 從特徵描述到深度學習 -
Docker 專業養成 ─ 活用基礎與實踐技能 (暢銷回饋版)$450$351 -
機器學習的數學基礎 : AI、深度學習打底必讀$580$458 -
精通機器學習|使用 Scikit-Learn , Keras 與 TensorFlow, 2/e (Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2/e)$1,200$948 -
基於 GPU 加速的計算機視覺編程:使用 OpenCV 和 CUDA 實時處理複雜圖像數據$474$450 -
決心打底!Python 深度學習基礎養成$690$587 -
深度學習 -- 硬體設計$750$675 -
機器學習的數學:用數學引領你走進 AI 的神秘世界$580$452 -
TensorFlow 2.x 人工智慧、機器學習超炫範例 200+ (附影音教學影片、範例程式)$560$442 -
$714Qt 5.12 實戰 -
預測之美:機器學習及深度學習真實生活應用 (特價書)$780$399 -
Arduino 實作入門與專題應用$550$429 -
白話演算法!培養程式設計的邏輯思考 (Grokking Algorithms: An illustrated guide for programmers and other curious people)$520$468 -
$534元學習:基礎與應用 -
$465Python OpenCV 從入門到實踐 (Python3全彩版) -
$454OpenCV 4.5 電腦視覺開發實戰 (基於 VC++) -
$235OpenCV 電腦視覺基礎教程 (Python版)(慕課版) -
Python OpenCV 從入門到精通$479$455 -
$505OpenCV 4 計算機視覺:Python 語言實現 (Learning OpenCV 4 Computer Vision with Python 3, 3/e) -
$330基於 OpenCV 的移動機器人目標跟蹤實現 -
Raspberry Pi 樹莓派:Python x AI 超應用聖經$699$594 -
$403智能圖像處理:Python 和 OpenCV 實現
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
85折
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$544 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
本書詳細講解基於OpenCV的傳統電腦視覺和以TensorFlow代碼為主的基於深度學習的電腦視覺。
本書從基本的圖像特徵開始,包括顏色特徵、幾何特徵、局部特徵、梯度特徵,到圖像美化,再到傳統目標檢測、光流與跟蹤等;
繼而進入深度學習部分,首先帶來深度學習的基本原理,然後是捲積神經網絡的深入剖析,進而闡述如何將捲積神經網絡應用於電腦視覺的物體分類、
目標檢測等常見問題上,最後介紹電腦視覺最新的GAN網絡。本書以非常簡單的公式和原理解釋學習過程中遇到的問題,
通過大量精美的圖片讓讀者直觀感受電腦視覺的效果,深入理解電腦視覺的核心內容。 本書適合人工智能方向的大學本科生、研究生,
以及初學者閱讀。對於有一定基礎和經驗的讀者,也能幫助他們查缺補漏,深入理解和掌握相關原理和方法,提高實際解決問題的能力。
作者簡介
餘海林,清華大學數理基礎科學實驗班畢業、美國加州大學洛杉磯分校(UCLA)計算機碩士畢業,AI火箭營高級講師。
有著紮實的數理基礎和計算機編程能力,曾獲得美國大學生數學建模大賽一等獎。
擅長機器學習、深度學習、計算機視覺、自然語言處理等AI領域的前沿技術,參與過多個AI實踐項目。
在AI火箭營開設多門課程,累計學習人次超過10萬,講課風格嚴謹而幽默、深刻且易懂,深受廣大學員的認可。
翟中華,清華大學碩士畢業,北京洪策元創智能科技有限公司CEO,AI火箭營首席講師。
在機器學習、深度學習、計算機視覺、自然語言處理等人工智能領域有紮實的理論基礎和豐富的應用實踐經驗。
主講的課程“深度學習入門系列講解”“PyTorch深度學習實戰”等累計學員約30萬人次,講課風格抽絲剝繭、深入淺出、以簡馭繁,能夠把複雜的原理簡單化,把簡單的原理內涵化,深受廣大學員的認可。
目錄大綱
目錄
1章機器看世界
1.1計算機眼裡的圖像
1.2計算機視覺的起源
1.2.1馬爾計算視覺
1.2.2主動和目的視覺
1.2.3多視幾何和分層三維重建
1.2.4基於學習的視覺
1.3計算機視覺的難點
1.4深度學習的起源
1.5基於深度學習的計算機視覺
1.5.1研究方向
1.5.2未來發展
2章傳統圖像處理之OpenCV的妙用
2.1OpenCV安裝
2.2OpenCV模塊
2.3OpenCV數據存取
2.4OpenCV圖像基本作
2.4.1OpenCV圖像縮放
2.4.2OpenCV圖像裁剪
2.4.3OpenCV圖像旋轉
2.5從攝像頭讀取
2.6矩陣作
3章傳統圖像處理之尋找特徵
3.1顏色特徵
3.1.1RGB顏色空間
3.1.2HIS顏色空間
3.1.3HSV顏色空間
3.1.4顏色直方圖
3.1.5OpenCV圖像色調,對比度變化
3.2幾何特徵
3.2.1邊緣特徵
3.2.2角點
3.2.3斑點
3.3局部特徵
3.3.1SIFT算法
3.3.2SURF算法
3.4代碼實戰: 圖像匹配
4章傳統圖像處理之圖像美化
4.1添加圖形與文字
4.2圖像美白
4.3圖像修復與去噪
4.4圖像輪廓
4.5圖像金字塔
4.6代碼實戰: 圖像融合
5章傳統圖像處理之相機模型
5.1相機模型
5.1.1針孔相機模型
5.1.2影幾何
5.2透鏡
5.3透鏡畸變
6章傳統圖像處理之目標檢測
6.1OpenCV中的機器學習
6.1.1機器學習簡介
6.1.2OpenCV機器學習數據流
6.1.3OpenCV機器學習算法
6.2基於支持向量機的目標檢測與識別
6.2.1詞袋算法
6.2.2隱式支持向量機算法
6.3基於樹方法的目標檢測與識別
6.4代碼實戰: 人臉識別
6.5傳統圖像總結
7章深度學習初識
7.1深度學習基礎
7.2正向傳播、反向傳播算法
7.3非線性激活函數
7.4Dropout正則化方法
7.5GPU加速運算
8章基於深度學習的計算機視覺之捲積神經網絡
8.1捲積神經網絡基本架構
8.1.1捲積層
8.1.2池化層
8.1.3全連接層
8.1.4Softma激活函數
8.1.5交熵損失
8.2AleNet結構詳解
8.3捲積神經網絡的優點
9章基於深度學習的計算機視覺之TensorFlow
9.1TensorFlow的起源
9.2TensorFlow基礎知識
9.2.1安裝
9.2.2圖計算
9.2.3TensorFlow 2.0
9.2.4張量
9.2.5tf.data
9.2.6可視化
9.2.7模型存取
9.2.8Keras接口
9.2.9神經網絡搭建
9.3代碼實戰: 手寫數字
10章基於深度學習的計算機視覺之目標識別
10.1目標識別的概念
10.2構建數據集的方法
10.3搭建神經網絡
10.4訓練及效果評估
10.5解決過擬合
10.6數據增強
10.7遷移學習
11章基於深度學習的計算機視覺之兩階段目標檢測
11.1什麼是目標檢測
11.2目標檢測的難點
11.3目標檢測的基礎知識
11.3.1候選框
11.3.2交並比
11.3.3非極大值抑制
11.3.4傳統目標檢測基本流程
11.4目標檢測效果評估
11.5二階段算法: RCNN類網絡
11.5.1RCNN網絡
11.5.2Fast RCNN網絡
11.5.3Faster RCNN網絡
11.6代碼實戰
12章基於深度學習的計算機視覺之階段目標檢測
12.1YOLO網絡
12.1.1YOLO起源
12.1.2YOLO原理
12.1.3YOLOv2原理
12.1.4YOLOv3原理
12.1.5YOLO應用
12.2SSD網絡
12.3代碼實戰: 車牌識別
13章人臉識別: 傳統方法VS深度學習
13.1人臉識別技術的歷史
13.2人臉識別技術的發展前景
13.3人臉識別技術主要流程
13.3.1人臉識別的主要流程
13.3.2人臉識別的主要方法
13.3.3人臉識別的技術指標
13.4深度學習方法
13.5人臉識別的挑戰
14章基於深度學習的計算機視覺: 生成模型
14.1自動編碼器
14.1.1去噪自動編碼器
14.1.2變分自動編碼器
14.2風格遷移
14.3GAN網絡
參考文獻


