MATLAB機器學習

鄧奮發

  • 出版商: 清華大學
  • 出版日期: 2025-05-01
  • 售價: $414
  • 語言: 簡體中文
  • ISBN: 7302687552
  • ISBN-13: 9787302687559
  • 相關分類: MatlabMachine Learning
  • 下單後立即進貨 (約4週~6週)

  • MATLAB機器學習-preview-1
  • MATLAB機器學習-preview-2
  • MATLAB機器學習-preview-3
MATLAB機器學習-preview-1

相關主題

商品描述

"《MATLAB機器學習》以實際應用為背景,採用理論+公式+經典應用相結合的形式,深入淺出地介紹 MATLAB 機器學習,重點介紹各種機器學習的經典應用。全書共12章,主要介紹了機器學習、MATLAB 軟件、數學基礎知識、線性回歸分析、邏輯回歸分析、K-均值聚類算法分析、決策樹分析、主成分分析、支持向量機分析、樸素貝葉斯算法分析、隨機森林算法分析、神經網絡分析等內容。通過學習本書,讀者能夠瞭解機器學習在各領域中的應用,以及利用MATLAB實現機器學習的方便、快捷、專業性強等特點。 《MATLAB機器學習》可以作為高等院校人工智能相關專業的教材,也可以作為廣大科研人員、學者、工程技術人員的參考用書。"

目錄大綱

          第  1 章  機器學習 ............................................................................................................ 1

              1.1  機器學習的分類 ........................................................................................................... 1

                   1.1.1 用監督學習預測未來 ........................................................................................ 2

                   1.1.2 用無監督學習發現隱藏結構 ............................................................................. 3

                   1.1.3 用強化學習解決交互問題 ................................................................................. 4

                   1.1.4 分類和回歸術語 ................................................................................................ 4

              1.2  選擇正確的算法 ........................................................................................................... 5

              1.3  常用的機器學習算法 .................................................................................................... 7

              1.4  機器學習的應用領域 .................................................................................................... 8

          第  2 章 MATLAB    軟件 .............................................................................................................10

              2.1 MATLAB    數據類型 .................................................................................................... 10

                   2.1.1 矩陣 ................................................................................................................ 10

                   2.1.2 元胞數組 ......................................................................................................... 11

                   2.1.3 結構體 ............................................................................................................ 12

                   2.1.4 數據存儲 ......................................................................................................... 14

                   2.1.5 tall 數組 .......................................................................................................... 17

                   2.1.6 稀疏矩陣 ......................................................................................................... 19

                   2.1.7 表與分類數組 ................................................................................................. 22

                   2.1.8 大型   MAT  文件 ............................................................................................... 25

              2.2 MATLAB    作圖 ........................................................................................................... 27

                   2.2.1 二維線圖 ......................................................................................................... 27

                   2.2.2 通用二維圖形 ................................................................................................. 31

                   2.2.3 三維點或線圖 ................................................................................................. 32

                   2.2.4 通用三維圖形 ................................................................................................. 34

          第  3 章  數學基礎知識 ..............................................................................................................36

              3.1  矩陣的微分 ................................................................................................................ 36

                   3.1.1 標量與矩陣求導通用的法則 ........................................................................... 36

                   3.1.2 矩陣和向量求導的通用法則 ........................................................................... 38

                   3.1.3 MATLAB    的實現 ............................................................................................ 39

              3.2  向量和矩陣積分 ......................................................................................................... 41

                   3.2.1 向量梯度 ......................................................................................................... 41

                   3.2.2 微分公式 ......................................................................................................... 41

文前.indd   3                                                                                    2025/4/23   15:19:26   IV     MATLAB 機器學習

                   3.2.3 優化方法 ......................................................................................................... 42

                   3.2.4 拉格朗日乘子法 .............................................................................................. 42

                   3.2.5 向量矩陣積分實現 .......................................................................................... 42

              3.3  特徵值分解和奇異值分解 .......................................................................................... 43

                   3.3.1 特徵值分解 ..................................................................................................... 43

                   3.3.2 奇異值分解  .................................................................................................... 45

              3.4  最優化方法 ................................................................................................................ 47

                   3.4.1 無約束優化方法 .............................................................................................. 47

                   3.4.2 約束優化與      KKT  條件 .................................................................................... 53

                   3.4.3 二次規劃 ......................................................................................................... 57

          第  4 章  線性回歸分析 ..............................................................................................................60

              4.1  線性回歸模型 ............................................................................................................. 60

                   4.1.1 線性模型 ......................................................................................................... 60

                   4.1.2 損失函數 ......................................................................................................... 60

                   4.1.3 隨機梯度下降法 .............................................................................................. 61

                   4.1.4 線性回歸簡單實現 .......................................................................................... 61

              4.2  多元線性回歸 ............................................................................................................. 63

              4.3  廣義線性模型 ............................................................................................................. 68

                   4.3.1 廣義線性模型介紹 .......................................................................................... 69

                   4.3.2 廣義線性模型實現 .......................................................................................... 69

              4.4  多重共線性 ................................................................................................................ 75

                   4.4.1 什麽是多重共線性 .......................................................................................... 75

                   4.4.2 多重共性後果 ................................................................................................. 76

                   4.4.3 多重共線性檢驗 .............................................................................................. 79

                   4.4.4 多重共線性回歸實現 ...................................................................................... 79

              4.5  其他線性回歸 ............................................................................................................. 80

                   4.5.1 嶺回歸 ............................................................................................................ 81

                   4.5.2 Lasso 回歸 ...................................................................................................... 82

                   4.5.3 彈性網絡 ......................................................................................................... 83

                   4.5.4 逐步回歸 ......................................................................................................... 85

          第  5 章  邏輯回歸分析 ..............................................................................................................91

              5.1  邏輯回歸概述 ............................................................................................................. 91

              5.2  模型表達式 ................................................................................................................ 92

              5.3  損失函數 .................................................................................................................... 93

                   5.3.1 單個樣本評估正確的概率 ............................................................................... 93

                   5.3.2 所有樣本評估正確的概率 ............................................................................... 93

                   5.3.3 損失函數 ......................................................................................................... 93

              5.4  模型求解 .................................................................................................................... 94

              5.5  邏輯回歸的應用 ......................................................................................................... 95

文前.indd   4                                                                                    2025/4/23   15:19:27                                                                                           目錄        V

          第  6 章  K- 均值聚類算法分析 ...............................................................................................102

              6.1  K- 均值聚類算法概述 ............................................................................................... 102

                   6.1.1 K- 均值聚類算法的思想................................................................................ 102

                   6.1.2 K- 均值聚類算法的三要素 ............................................................................ 103

                   6.1.3 K- 均值聚類算法的步驟................................................................................ 103

                   6.1.4 K- 均值聚類算法的優缺點 ............................................................................ 104

                   6.1.5 K- 均值聚類算法調優 ................................................................................... 105

              6.2  K- 均值聚類算法實現 ............................................................................................... 107

                   6.2.1 K- 均值聚類算法函數 ................................................................................... 107

                   6.2.2 K- 均值聚類基於顏色的分割 .........................................................................111

              6.3  K- 均值聚類改進算法 ............................................................................................... 114

                   6.3.1 K-means++  算法 ........................................................................................... 114

                   6.3.2 ISODATA   算法 ............................................................................................. 117

          第  7 章  決策樹分析 ...............................................................................................................125

              7.1  決策樹的簡介 ........................................................................................................... 125

              7.2  決策樹的原理 ........................................................................................................... 125

                   7.2.1 信息熵 .......................................................................................................... 127

                   7.2.2 信息增益 ....................................................................................................... 127

                   7.2.3 信息增益率 ................................................................................................... 127

                   7.2.4 基尼系數 ....................................................................................................... 128

              7.3 3 種算法的對比 ........................................................................................................ 129

              7.4  剪樹處理 .................................................................................................................. 129

                   7.4.1 預剪枝 .......................................................................................................... 129

                   7.4.2 後剪枝 .......................................................................................................... 129

              7.5  決策樹的特點 ........................................................................................................... 130

              7.6  分類樹的函數 ........................................................................................................... 130

                   7.6.1 創建分類樹 ................................................................................................... 130

                   7.6.2 改進分類樹 ................................................................................................... 133

                   7.6.3 解釋分類樹 ................................................................................................... 134

                   7.6.4 交叉驗證分類樹 ............................................................................................ 136

                   7.6.5 測量性能 ....................................................................................................... 138

              7.7  決策樹的應用 ........................................................................................................... 141

          第  8 章  主成分分析 ...............................................................................................................148

              8.1  降維方法 .................................................................................................................. 148

              8.2  進行   PCA 的原因 ..................................................................................................... 149

              8.3 PCA   數學原理 .......................................................................................................... 149

                   8.3.1 內積與投影 ................................................................................................... 149

                   8.3.2 基 .................................................................................................................. 150

                   8.3.3 基變換的矩陣表示 ........................................................................................ 151

文前.indd   5                                                                                    2025/4/23   15:19:27   VI     MATLAB 機器學習

              8.4 PCA   涉及的主要問題 ............................................................................................... 152

              8.5 PCA   的優化目標 ...................................................................................................... 153

              8.6 PCA   的求解步驟 ...................................................................................................... 154

              8.7 PCA   的優缺點與應用場景 ....................................................................................... 154

                   8.7.1 PCA  方法的優點 ........................................................................................... 155

                   8.7.2 PCA  方法的缺點 ........................................................................................... 155

                   8.7.3 PCA  的應用場景 ........................................................................................... 155

              8.8 PCA   相關函數 .......................................................................................................... 156

              8.9  偏最小二乘回歸和主成分回歸 ................................................................................. 160

          第  9 章  支持向量機分析 ........................................................................................................167

              9.1  線性分類 .................................................................................................................. 167

                   9.1.1 邏輯回歸 ....................................................................................................... 167

                   9.1.2 邏輯回歸表述       SVM ...................................................................................... 168

                   9.1.3 線性分類簡單實例 ........................................................................................ 168

              9.2  硬間隔 ...................................................................................................................... 169

                   9.2.1 求解間隔 ....................................................................................................... 170

                   9.2.2 拉格朗日乘數法 ............................................................................................ 171

                   9.2.3 對偶問題 ....................................................................................................... 172

                   9.2.4 軟間隔 .......................................................................................................... 173

                   9.2.5 核(Kernel)函數 ......................................................................................... 175

                   9.2.6 模型評估和超參數調優................................................................................. 176

              9.3  支持向量機的相關函數 ............................................................................................ 178

                   9.3.1 支持向量機回歸函數 .................................................................................... 178

                   9.3.2 支持向量機分類函數 .................................................................................... 185

              9.4  用於二類分類的支持向量機 ..................................................................................... 192

                   9.4.1 用高斯核訓練       SVM  分類器 .......................................................................... 192

                   9.4.2 使用自定義核函數訓練            SVM  分類器 ............................................................ 195

                   9.4.3 繪制   SVM  分類模型的後驗概率區域 ............................................................ 198

                   9.4.4 使用線性支持向量機分析圖像 ..................................................................... 200

          第  10 章   樸素貝葉斯算法分析 ..............................................................................................203

              10.1  貝葉斯公式 ............................................................................................................ 203

              10.2  樸素貝葉斯算法的原理 .......................................................................................... 204

              10.3  樸素貝葉斯常用模型 .............................................................................................. 205

                   10.3.1 伯努利樸素貝葉斯模型 ............................................................................... 205

                   10.3.2 多項式樸素貝葉斯 ...................................................................................... 207

                   10.3.3 高斯樸素貝葉斯 .......................................................................................... 208

              10.4  拉普拉斯平滑 ......................................................................................................... 209

              10.5  樸素貝葉斯算法的優缺點 ...................................................................................... 210

              10.6  樸素貝葉斯算法的創建函數 ................................................................................... 210

文前.indd   6                                                                                    2025/4/23   15:19:27                                                                                           目錄        VII

              10.7  樸素貝葉斯算法的實現 .......................................................................................... 212

                   10.7.1 邏輯回歸模型的貝葉斯分析 ....................................................................... 212

                   10.7.2 判別分析、樸素貝葉斯分類器和決策樹進行分類 ......................................      219

          第  11 章  隨機森林算法分析 ..................................................................................................227

              11.1  集成學習 ................................................................................................................ 227

              11.2  集成學習的常見算法 .............................................................................................. 228

                   11.2.1 Bagging 算法 .............................................................................................. 228

                   11.2.2 Boosting 算法 .............................................................................................. 228

                   11.2.3 Stacking 算法 .............................................................................................. 229

              11.3  隨機森林算法 ......................................................................................................... 230

                   11.3.1 隨機森林算法簡介 ...................................................................................... 231

                   11.3.2 隨機森林算法原理 ...................................................................................... 231

                   11.3.3 隨機森林算法優缺點 .................................................................................. 232

                   11.3.4 隨機森林算法功能 ...................................................................................... 233

                   11.3.5 隨機森林算法實現函數 ............................................................................... 233

                   11.3.6 隨機森林算法的應用 .................................................................................. 244

          第  12 章   神經網絡分析 .........................................................................................................249

              12.1  神經網絡的概述 ..................................................................................................... 249

                   12.1.1 前饋神經網絡 ............................................................................................. 249

                   12.1.2 前饋神經網絡的應用 .................................................................................. 253

              12.2  捲積神經網絡 ......................................................................................................... 258

                   12.2.1 用捲積代替全連接 ...................................................................................... 258

                   12.2.2 捲積層 ........................................................................................................ 259

                   12.2.3 匯聚層 ........................................................................................................ 259

                   12.2.4 全連接層 ..................................................................................................... 260

                   12.2.5 典型的捲積神經網絡結構 ........................................................................... 260

                   12.2.6 幾種典型的捲積神經網絡 ........................................................................... 260

                   12.2.7 捲積神經網絡實現 ...................................................................................... 263

              12.3  循環神經網絡 ......................................................................................................... 267

                   12.3.1 循環神經網絡概述 ...................................................................................... 267

                   12.3.2 循環神經網絡的實現 .................................................................................. 272

文前.indd   7                                                                                    2025/4/23   15:19:27文前.indd   8                                                                                                                                                                                  2025/4/23   15:19:27