資料探勘:人工智慧與機器學習發展以 SPSS Modeler 為範例
廖述賢、溫志皓
- 出版商: 博碩文化
- 出版日期: 2019-01-31
- 定價: $690
- 售價: 7.8 折 $538
- 語言: 繁體中文
- 頁數: 416
- ISBN: 986434367X
- ISBN-13: 9789864343676
-
相關分類:
SPSS、人工智慧、Machine Learning、Data-mining
立即出貨 (庫存 < 9)
買這商品的人也買了...
-
$500$475 -
$690$656 -
$690$656 -
$1,000$900 -
$680$530 -
$580$458 -
$360$284 -
$580$458 -
$650$585 -
$450$356 -
$400$340 -
$500$390 -
$620$527 -
$780$663 -
$680$578 -
$500$350 -
$540$459 -
$360$324 -
$420$332 -
$550$429 -
$550$495 -
$490$417 -
$700$665 -
$680$537 -
$551IBM SPSS Modeler 18.0 數據挖掘權威指南
相關主題
商品描述
資料探勘是一門結合統計學與資訊科學相關理論的方法學,藉由各種功能與模式的導入與實踐,使得資料探勘的應用遍及各個領域,成為研究與實務工作者重要的研究方法,尤其是運用在人工智慧及機器學習的未來發展。再者,隨著知識經濟的發展,以資料探勘為基礎,創造個人、組織競爭優勢、與經營績效的管理理論及工具,也就成為資料探勘發展及應用的趨勢。故資料探勘理論與工具方法的學習與導入於組織、企業,就成為知識探勘、運用與管理的重要工作。因此,我們也可以說資料探勘,對於學術界與實務界而言,是一門兼具問題、理論、與方法的學科。
這本書所要提供給讀者的內容,即嘗試以不同資料探勘的理論為經,演算方法為緯,在經、緯的架構中,藉著個案實例,以及SPSS Modeler系統實際的操作,來說明資料探勘模式與功能所能提供問題解決的方法,以及在人工智慧及機器學習未來的發展。
本書範例檔請至博碩官網下載。
目錄大綱
Chapter 01 資料探勘概論
1-1 資料探勘概念
1-2 何謂資料探勘?
1-3 資料探勘的定義
1-4 資料探勘的流程
1-5 資料探勘的應用
Chapter 02 資料探勘的功能
2-1 資料探勘的方式與功能
2-2 分類 (Classification)
2-3 推估 (Estimation)
2.4 預測 (Predication)
2-5 集群 (Cluster or Segmentation)
2-6 關聯 (Association rules analysis)
2-7 順序 (Sequential)
Chapter 03 資料庫與資料探勘 – 大資料Ⅰ
3-1 大資料與資料庫
3-2 資料與資料庫
3-3 資料庫架構
3-4 IBM SPSS Modeler 資料來源
3-5 資料品質
3-6 資料預處理
Chapter 04 資料與資料探勘 – 大數據Ⅱ
4-1 大數據與資料
4-2 資料
4-3 IBM SPSS Modeler 資料格式及設定
4-4 自動資料準備
4-5 遺漏值的處理
Chapter 05 決策樹:C5.0
5-1 決策樹基本概念
5-2 決策樹演算法簡介
5-3 IBM SPSS Modeler C5.0 節點資料格式與設定
5-4 IBM SPSS Modeler C5.0 節點設定範圍
5-5 個案應用—生物資訊
Chapter 06 分類與迴歸樹: C&RT
6-1 分類與迴歸樹基本概念
6-2 C&R Tree演算法簡介
6-3 IBM SPSS Modeler C&RT 節點資料格式與設定
6-4 IBM SPSS Modeler C&R Tree 節點設定範圍
6-5 個案應用—醫學診斷
Chapter 07 因數分析: FA/PCA
7-1 因素分析PCA/Factor基本概念
7-2 因素分析演算法簡介
7-3 IBM SPSS Modeler 主成分/因子 節點資料格式與設定
7-4 IBM SPSS Modeler 主成分/因子 節點設定範圍
7-5 個案應用—學術量表分析
Chapter 08 類神經網路: Artificial Neural Networks
8-1 類神經網路基本概念
8-2 類神經網路演算法簡介
8-3 IBM SPSS Modeler Neural Networks 節點資料格式與設定
8-4 IBM SPSS Modeler 類神經網路 (ANN) 節點設定範圍
8-5 個案應用—設備狀態監測
Chapter 09 貝氏網路 –Bayesian Networks
9-1 貝氏網路基本概念
9-2 貝氏定理簡介
9-3 IBM SPSS Modeler Bayesian 網路節點資料格式與設定
9-4 IBM SPSS Modeler Bayesian 網路節點設定範圍
9-5 個案應用—鐵達尼號乘客存活率分析
Chapter 10 支援向量機 – Support Vector Machine
10-1 支援向量機基本概念
10-2 多分類支援向量機演算法簡介
10-3 IBM SPSS Modeler SVM 節點資料格式與設定
10-4 IBM SPSS Modeler SVM 節點設定範圍
10-5 個案應用—公共行政管理應用
Chapter 11 關聯規則 – Association rules
11-1 關聯規則 Apriori 基本概念
11-2 Apriori 演算法簡介
11-3 IBM SPSS Modeler Apriori 節點資料格式與設定
11-4 IBM SPSS Modeler Apriori 節點設定範圍
11-5 個案應用—零售業購物籃分析應用
Chapter 12 次序分析 – Sequence analysis
12-1 次序分析Sequence analysis基本概念
12-2 次序分析演算法簡介
12-3 IBM SPSS Modeler 序列節點資料格式與設定
12-4 IBM SPSS Modeler 序列節點設定範圍
12-5 個案應用—零售業的需求推估
Chapter 13 集群分析 – Clustering analysis
13-1 集群分析 K-means 的基本概念
13-2 K-Means 演算法簡介
13-3 IBM SPSS Modeler K-Means 節點資料格式與設定
13-4 IBM SPSS Modeler K-Means 節點設定範圍
13-5 個案應用—城市汙水處理廠的水質資料
Chapter 14 類神經網路 – Kohonen neural network
14-1 類神經網路 Kohonen 基本概念
14-2 類神經網路 Kohonen neural network 演算法
14-3 IBM SPSS Modeler Kohonen neural network 節點資料格式與設定
14-4 IBM SPSS Modeler Kohonen neural network 節點設定範圍
14-5 個案應用—天文星體辨識資料應用
Chapter 15 資料探勘與人工智慧發展
15-1 人工智慧起源
15-2 人工智慧的領域
15-3 人工智慧的方法
15-4 資料探勘與人工智慧發展
Chapter 16 資料探勘與機器學習發展
16-1 機器學習起源
16-2 機器學習的領域
16-3 機器學習的方法
16-4 資料探勘與機器學習發展