買這商品的人也買了...
-
$474$450 -
$176數學之美, 2/e
-
$1,500$1,425 -
$653Azure、DevOps 和微服務軟件架構實戰, 2/e
-
$580$458
相關主題
商品描述
Create good data from the start, rather than fixing it after it is collected. By following the guidelines in this book, you will be able to conduct more effective analyses and produce timely presentations of research data.
Data analysts are often presented with datasets for exploration and study that are poorly designed, leading to difficulties in interpretation and to delays in producing meaningful results. Much data analytics training focuses on how to clean and transform datasets before serious analyses can even be started. Inappropriate or confusing representations, unit of measurement choices, coding errors, missing values, outliers, etc., can be avoided by using good dataset design and by understanding how data types determine the kinds of analyses which can be performed.
This book discusses the principles and best practices of dataset creation, and covers basic data types and their related appropriate statistics and visualizations. A key focus of the book is why certain data types are chosen for representing concepts and measurements, in contrast to the typical discussions of how to analyze a specific data type once it has been selected.
What You Will Learn
- Be aware of the principles of creating and collecting data
- Know the basic data types and representations
- Select data types, anticipating analysis goals
- Understand dataset structures and practices for analyzing and sharing
- Be guided by examples and use cases (good and bad)
- Use cleaning tools and methods to create good data
Who This Book Is For
Researchers who design studies and collect data and subsequently conduct and report the results of their analyses can use the best practices in this book to produce better descriptions and interpretations of their work. In addition, data analysts who explore and explain data of other researchers will be able to create better datasets.
商品描述(中文翻譯)
創建良好的數據從一開始,而不是在收集後再進行修正。遵循本書中的指導方針,您將能夠進行更有效的分析並及時呈現研究數據。
數據分析師經常面對設計不良的數據集進行探索和研究,這導致了解釋上的困難以及產出有意義結果的延遲。許多數據分析訓練專注於如何在進行嚴格分析之前清理和轉換數據集。不當或令人困惑的表示、測量單位的選擇、編碼錯誤、缺失值、異常值等,都可以通過良好的數據集設計以及理解數據類型如何決定可以執行的分析類型來避免。
本書討論數據集創建的原則和最佳實踐,並涵蓋基本數據類型及其相關的適當統計和可視化。本書的一個關鍵重點是為什麼選擇某些數據類型來表示概念和測量,這與典型的討論如何分析特定數據類型一旦被選擇後的情況形成對比。
您將學到的內容:
- 了解創建和收集數據的原則
- 知道基本數據類型和表示方式
- 選擇數據類型,預測分析目標
- 理解數據集結構及分析和共享的實踐
- 以範例和案例(好與壞)為指導
- 使用清理工具和方法來創建良好的數據
本書的讀者對象:
設計研究並收集數據的研究人員,隨後進行分析並報告結果,可以利用本書中的最佳實踐來產出更好的描述和解釋。此外,探索和解釋其他研究人員數據的數據分析師將能夠創建更好的數據集。
作者簡介
Harry J. Foxwell is a professor. He teaches graduate data analytics courses at George Mason University in the department of Information Sciences and Technology and he designed the data analytics curricula for his university courses. He draws on his decades of experience as Principal System Engineer for Oracle and for other major IT companies to help his students understand the concepts, tools, and practices of big data projects. He is co-author of several books on operating systems administration. He is a US Army combat veteran, having served in Vietnam as a Platoon Sergeant in the First Infantry Division. He lives in Fairfax, Virginia with his wife Eileen and two bothersome cats.
作者簡介(中文翻譯)
哈利·J·福克斯威爾是一位教授。他在喬治梅森大學的資訊科學與技術系教授研究生數據分析課程,並為他的課程設計了數據分析課程大綱。他利用自己在甲骨文(Oracle)及其他主要IT公司擔任首席系統工程師的數十年經驗,幫助學生理解大數據專案的概念、工具和實踐。他是幾本有關作業系統管理的書籍的共同作者。他是一名美國陸軍退伍軍人,曾在越南擔任第一步兵師的排長。他與妻子艾琳(Eileen)和兩隻麻煩的貓住在維吉尼亞州的費爾法克斯。