移動端機器學習實戰
Karthikeyan NG 王東明,周達希譯
- 出版商: 人民郵電
- 出版日期: 2019-10-01
- 定價: $354
- 售價: 7.9 折 $280
- 語言: 簡體中文
- 頁數: 206
- 裝訂: 平裝
- ISBN: 7115516847
- ISBN-13: 9787115516848
-
相關分類:
TensorFlow
- 此書翻譯自: Machine Learning Projects for Mobile Applications: Build Android and iOS applications using TensorFlow Lite and Core ML
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
Python Reinforcement Learning Projects: Eight hands-on projects exploring reinforcement learning algorithms using TensorFlow (Paperback)$1,810$1,720 -
PyTorch 深度學習與自然語言中文處理$420$328 -
$403Python 統計分析 (An Introduction to Statistics with Python: With Applications in the Life Sciences) -
$254大數據數學基礎 (R語言描述) -
$465統計學習方法, 2/e -
科班出身的 AI人必修課:OpenCV 影像處理 使用 Python$780$616 -
深度學習 (Deep Learning)(繁體中文版)$1,200$1,020 -
NumPy 高速運算徹底解說 - 六行寫一隻程式?你真懂深度學習?手工算給你看!$750$638 -
極詳細 + 超深入:最新版 TensorFlow 1.x/2.x 完整工程實作$1,200$948 -
$658移動平臺深度神經網絡實戰:原理、架構與優化 -
一張圖讀懂風力發電$300$255 -
強化學習(RL):使用 PyTorch 徹底精通 (有些許瑕疵,不影響閱讀)$780$616 -
$327機器學習入門:基於數學原理的Python實戰 -
$301計算機視覺之深度學習:使用 TensorFlow 和 Keras 訓練高級神經網絡 -
$673Flutter 從0基礎到 App 上線 -
$331活用AI與深度學習 人工智能的商業應用 -
Python 神乎其技 全新超譯版 - 快速精通 Python 進階功能, 寫出 Pythonic 的程式 (Python Tricks: A Buffet of Awesome Python Features)$580$493 -
Mobile Deep Learning with TensorFlow Lite, ML Kit and Flutter$1,380$1,311 -
深度學習的數學地圖 -- 用 Python 實作神經網路的數學模型 (附數學快查學習地圖)$580$458 -
$474Anaconda 數據科學實戰 -
$564知識圖譜與深度學習 -
$469面向移動設備的機器學習 -
$611Python無監督機器學習最佳實踐 -
$301Python 自然語言處理實戰 (Hands-On Natural Language Processing with Python: A practical guide to applying deep learning architectures to your NLP applications) -
Kaggle 競賽攻頂秘笈 -- 揭開 Grandmaster 的特徵工程心法,掌握制勝的關鍵技術$1,000$850
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$576 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
本書系統地講述如何基於TensorFlow Lite和Core ML構建Android與iOS應用程序。
本書共9章。
章介紹機器學習的基礎知識以及TensorFlow Lite和Core ML框架。
第2~8章介紹如何開發7款常見應用程序,分別是一款預測人物年齡和性別的應用程序,
一款在照片上應用藝術風格遷移的應用程序,一款用於面部檢測和條形碼掃描的應用程序,
一款類似於Snapchat的應用程序,一款識別手寫數字的應用程序,一款流行的在線換臉應用程序,
一款利用遷移學習完成食物分類的應用程序。第9章總結全書,並介紹基於機器學習的雲服務。
本書適合機器學習、深度學習和人工智能等方面的專業人士閱讀。
目錄大綱
●章機器學習在移動端的使用情況1
1.1機器學習的基礎3
1.1.1監督式學習3
1.1.2非監督式學習3
1.1.3線性回歸——監督式學習4
1.2TensorFlow Lite和Core ML10
1.3TensorFlow Lite11
1.3.1支持的平臺12
1.3.2TensorFlow Lite的內存使用情況和性能13
1.3.3動手使用TensorFlow Lite14
1.3.4將SavedModel轉換為TensorFlow Lite格式15
1.3.5在Android上使用TensorFlow Lite16
1.3.6在iOS上使用TensorFlow Lite19
1.4Core ML20
1.4.1Core ML模型轉換21
1.4.2iOS應用程序中的Core ML22
1.5本章小結24
第2章使用Core ML和CNN預測年齡與性別25
2.1年齡和性別預測26
2.1.1年齡預測27
2.1.2性別預測27
2.2捲積神經網絡28
2.2.1發現模式28
2.2.2找出圖片中的特徵值29
2.2.3池化層31
2.2.4ReLU層31
2.2.5局部響應歸一化層32
2.2.6dropout層32
2.2.7全連接層33
2.2.8使用CNN完成年齡和性別預測33
2.3在iOS上使用Core ML實現應用程序35
2.4本章小結44
第3章在照片上應用
藝術神經風格遷移45
3.1藝術神經風格遷移46
3.1.1背景47
3.1.2VGG網絡48
3.2構建應用程序49
3.2.1TensorFlow-to-Core ML轉換52
3.2.2iOS應用程序55
3.2.3Android應用程序57
3.3本章小結77
3.4參考網站77
第4章基於Firebase的ML Kit78
4.1ML Kit的基礎79
4.1.1基本特徵集80
4.1.2構建應用程序81
4.2人臉檢測86
4.2.1面部朝向追蹤86
4.2.2運行面部檢測器91
4.3條形碼掃描器98
4.3.1創建FirebaseVisionImage對象99
4.3.2創建FirebaseVisionBarcodeDetector對象102
4.3.3條形碼檢測102
4.4文本識別105
4.4.1基於設備的文本識別105
4.4.2基於雲端的文本識別107
4.5本章小結109
第5章在Android上的AR濾鏡110
5.1MobileNet模型111
5.2構建Android應用程序116
5.3參考網站134
5.4問題134
5.5本章小結134
第6章使用對抗學習構建手寫數字分類器135
6.1生成式對抗網絡136
6.2MNIST數據庫137
6.3構建TensorFlow模型138
6.4訓練神經網絡140
6.4.1構建Android應用程序143
6.4.2用於手寫的FreeHandView144
6.4.3數字分類器150
6.5本章小結153
第7章使用OpenCV與朋友換臉154
7.1換臉155
7.1.1換臉的步驟157
7.1.2構建Android應用程序160
7.1.3構建本地的臉交換器庫161
7.1.4構建應用程序167
7.2本章小結179
7.3參考信息179
7.4問題180
第8章使用遷移學習完成食物分類181
8.1遷移學習182
8.2訓練TensorFlow模型184
8.2.1安裝TensorFlow184
8.2.2訓練圖片184
8.2.3使用圖片重新訓練185
8.2.4構建iOS應用程序191
8.3本章小結198
第9章接下來做什麼199
9.1溫故而知新200
9.1.1當開發機器學習應用程序時從何處入手201
9.1.2構建自己的模型203
9.2本章小結206
9.3進一步閱讀206
