Python Reinforcement Learning Projects: Eight hands-on projects exploring reinforcement learning algorithms using TensorFlow (Paperback)
暫譯: Python 強化學習專案:八個實作專案探索使用 TensorFlow 的強化學習演算法 (平裝本)

Sean Saito, Yang Wenzhuo, Rajalingappaa Shanmugamani

買這商品的人也買了...

相關主題

商品描述

Deploy autonomous agents in business systems using powerful Python libraries and sophisticated reinforcement learning models

Key Features

  • Implement Q-learning and Markov models with Python and OpenAI
  • Explore the power of TensorFlow to build self-learning models
  • Eight AI projects to gain confidence in building self-trained applications

Book Description

Reinforcement learning (RL) is the next big leap in the artificial intelligence domain, given that it is unsupervised, optimized, and fast. Python Reinforcement Learning Projects takes you through various aspects and methodologies of reinforcement learning, with the help of insightful projects.

You will learn about core concepts of reinforcement learning, such as Q-learning, Markov models, the Monte-Carlo process, and deep reinforcement learning. As you make your way through the book, you'll work on projects with various datasets, including numerical, text, video, and audio, and will gain experience in gaming, image rocessing, audio processing, and recommendation system projects. You'll explore TensorFlow and OpenAI Gym to implement a deep learning RL agent that can play an Atari game. In addition to this, you will learn how to tune and configure RL algorithms and parameters by building agents for different kinds of games. In the concluding chapters, you'll get to grips with building self-learning models that will not only uncover layers of data but also reason and make decisions.

By the end of this book, you will have created eight real-world projects that explore reinforcement learning and will have handson experience with real data and artificial intelligence (AI) problems.

What you will learn

  • Train and evaluate neural networks built using TensorFlow for RL
  • Use RL algorithms in Python and TensorFlow to solve CartPole balancing
  • Create deep reinforcement learning algorithms to play Atari games
  • Deploy RL algorithms using OpenAI Universe
  • Develop an agent to chat with humans
  • Implement basic actor-critic algorithms for continuous control
  • Apply advanced deep RL algorithms to games such as Minecraft
  • Autogenerate an image classifier using RL

Who this book is for

Python Reinforcement Learning Projects is for data analysts, data scientists, and machine learning professionals, who have working knowledge of machine learning techniques and are looking to build better performing, automated, and optimized deep learning models. Individuals who want to work on self-learning model projects will also find this book useful.

Table of Contents

  1. Up and running with Reinforcement Learning
  2. Balancing Cart Pole
  3. Playing ATARI Games
  4. Simulating Control Tasks
  5. Building Virtual Worlds in Minecraft
  6. Learning to Play Go
  7. Creating a Chatbot
  8. Generating a Deep Learning Image Classifier
  9. Predicting Future Stock Prices
  10. Looking Ahead

商品描述(中文翻譯)

**在商業系統中部署自主代理,使用強大的 Python 函式庫和複雜的強化學習模型**

#### 主要特點

- 使用 Python 和 OpenAI 實現 Q-learning 和馬可夫模型
- 探索 TensorFlow 的力量以構建自學模型
- 八個 AI 專案以增強建立自訓練應用的信心

#### 書籍描述

強化學習(Reinforcement Learning, RL)是人工智慧領域的下一個重大飛躍,因為它是無監督的、優化的且快速的。《Python 強化學習專案》將帶您了解強化學習的各個方面和方法論,並透過富有洞察力的專案來輔助學習。

您將學習強化學習的核心概念,例如 Q-learning、馬可夫模型、蒙地卡羅過程和深度強化學習。在閱讀本書的過程中,您將處理各種數據集的專案,包括數值、文本、視頻和音頻,並獲得在遊戲、圖像處理、音頻處理和推薦系統專案中的經驗。您將探索 TensorFlow 和 OpenAI Gym,以實現一個能夠玩 Atari 遊戲的深度學習 RL 代理。此外,您還將學習如何通過為不同類型的遊戲構建代理來調整和配置 RL 算法和參數。在最後幾章中,您將掌握構建自學模型的方法,這些模型不僅能揭示數據的層次,還能進行推理和決策。

在本書結束時,您將創建八個探索強化學習的實際專案,並擁有處理真實數據和人工智慧(AI)問題的實踐經驗。

#### 您將學到的內容

- 訓練和評估使用 TensorFlow 構建的神經網絡以進行 RL
- 使用 Python 和 TensorFlow 的 RL 算法解決 CartPole 平衡問題
- 創建深度強化學習算法以玩 Atari 遊戲
- 使用 OpenAI Universe 部署 RL 算法
- 開發一個與人類聊天的代理
- 實現基本的 Actor-Critic 算法以進行連續控制
- 將先進的深度 RL 算法應用於 Minecraft 等遊戲
- 使用 RL 自動生成圖像分類器

#### 本書適合誰

《Python 強化學習專案》適合數據分析師、數據科學家和機器學習專業人士,他們對機器學習技術有工作知識,並希望構建性能更佳、自動化和優化的深度學習模型。希望從事自學模型專案的個人也會發現本書非常有用。

#### 目錄

1. 開始強化學習
2. 平衡 Cart Pole
3. 玩 ATARI 遊戲
4. 模擬控制任務
5. 在 Minecraft 中構建虛擬世界
6. 學習下棋
7. 創建聊天機器人
8. 生成深度學習圖像分類器
9. 預測未來股價
10. 展望未來