大語言模型:基礎與前沿
熊濤
買這商品的人也買了...
-
$1,074$1,020 -
$594$564 -
$880$695 -
$560$442 -
$750$593 -
$720$569 -
$720$569 -
$556大規模語言模型:從理論到實踐
-
$580$458 -
$580$458 -
$880$695 -
$600$450 -
$474$450 -
$454LangChain 實戰:從原型到生產,動手打造 LLM 應用
-
$714$678 -
$479$455 -
$560$442 -
$379LangChain 簡明講義:從0到1建構 LLM 應用程式
-
$602大語言模型應用指南:以 ChatGPT 為起點,從入門到精通的 AI 實踐教程 (全彩)
-
$607多模態大模型:新一代人工智能技術範式
-
$690$545 -
$800$632 -
$680$537 -
$714$678 -
$650$507
商品描述
本書深入闡述了大語言模型的基本概念和算法、研究前沿以及應用,涵蓋大語言模型的廣泛主題,從基礎到前沿,從方法到應用,涉及從方法論到應用場景方方面面的內容。首先,本書介紹了人工智能領域的進展和趨勢;其次,探討了語言模型的基本概念和架構、Transformer、預訓練目標和解碼策略、上下文學習和輕量級微調、稀疏專家模型、檢索增強型語言模型、對齊語言模型與人類偏好、減少偏見和有害性以及視覺語言模型等內容;最後,討論了語言模型對環境的影響。
本書內容全面、系統性強,適合高年級本科生和研究生、博士後研究人員、講師以及行業從業者閱讀與參考。
作者簡介
熊涛,美国明尼苏达大学双城分校电子与计算机工程博士。曾在多家中美知名高科技公司担任高级管理职位和首席科学家,在人工智能的多个领域,包括大语言模型、图神经网络等从事研发和管理工作多年。
目錄大綱
第 1章 大語言模型:辯論、爭議與未來發展方向 1
1.1 新時代的曙光 1
1.2 LLM有意識嗎 3
1.2.1 理解LLM的層次結構 3
1.2.2 意識是否需要碳基生物學 4
1.2.3 具身化與落地 4
1.2.4 世界模型 7
1.2.5 溝通意圖 8
1.2.6 系統性和全面泛化 9
1.3 未來發展方向 10
1.4 小結 13
第 2章 語言模型和分詞 15
2.1 語言建模的挑戰 16
2.2 統計語言建模 16
2.3 神經語言模型 18
2.4 評估語言模型 19
2.5 分詞 19
2.5.1 按空格分割 20
2.5.2 字符分詞 21
2.5.3 子詞分詞 21
2.5.4 無分詞器 24
2.5.5 可學習的分詞 25
2.6 小結 27
第3章 Transformer 29
3.1 Transformer編碼器模塊 29
3.2 編碼器-解碼器架構 31
3.3 位置嵌入 32
3.3.1 絕對位置編碼 32
3.3.2 相對位置編碼 34
3.4 更長的上下文 38
3.5 外部記憶 42
3.6 更快、更小的Transformer 45
3.6.1 高效註意力 45
3.6.2 條件計算 47
3.6.3 搜索高效Transformer 48
3.6.4 在單個GPU上一天內訓練一個語言模型 49
3.7 推理優化 49
3.7.1 推測解碼 49
3.7.2 簡化Transformer 51
3.7.3 修剪 52
3.7.4 蒸餾 53
3.7.5 混合精度 54
3.7.6 高效擴展Transformer推理 54
3.8 小結 56
第4章 預訓練目標和解碼策略 57
4.1 模型架構 57
4.2 預訓練目標 60
4.3 具有代表性的語言模型 62
4.4 解碼策略 67
4.5 小結 72
第5章 上下文學習和輕量級微調 73
5.1 上下文學習 74
5.1.1 示範樣本選擇 75
5.1.2 樣本排序 82
5.1.3 指令生成 82
5.1.4 思維鏈 84
5.1.5 遞歸提示 87
5.1.6 為什麽ICL有效 90
5.1.7 評估 93
5.2 提示語言模型的校準 94
5.3 輕量級微調 97
5.3.1 基於添加的方法 98
5.3.2 基於規範的方法 100
5.3.3 基於重新參數化的方法 101
5.3.4 混合方法 103
5.4 小結 104
第6章 訓練更大的模型 107
6.1 擴大尺度法則 107
6.1.1 預訓練Transformer擴大尺度的啟示 107
6.1.2 預訓練和微調Transformer帶來的新啟示 110
6.1.3 k比特推理擴大尺度法則 111
6.1.4 挑戰與機遇 112
6.2 涌現能力 113
6.3 人工智能加速器 115
6.4 並行 117
6.4.1 數據並行 119
6.4.2 流水線並行 126
6.4.3 張量/模型並行 131
6.4.4 專家混合 133
6.5 混合訓練和低精度訓練 133
6.5.1 單位縮放 133
6.5.2 FP8與INT8 135
6.6 其他節省內存的設計 136
6.7 小結 137
第7章 稀疏專家模型 139
7.1 為什麽採用稀疏專家模型 139
7.2 路由算法 142
7.2.1 每個詞元選擇top-k個專家 142
7.2.2 每個專家選擇top-k個詞元 144
7.2.3 全局最優分配 145
7.2.4 隨機路由 148
7.2.5 雙層路由 149
7.2.6 針對不同預訓練領域的不同專家 149
7.3 其他改進措施 152
7.3.1 加快訓練速度 152
7.3.2 高效的MoE架構 153
7.3.3 生產規模部署 154
7.3.4 通過稀疏MoE擴展視覺語言模型 154
7.3.5 MoE與集成 155
7.4 小結 156
第8章 檢索增強型語言模型 157
8.1 預訓練檢索增強型語言模型 158
8.2 詞元級檢索 161
8.3 通過高效和精簡檢索進行問答和多跳推理 163
8.4 檢索增強型Transformer 166
8.5 檢索增強型黑盒語言模型 168
8.6 視覺增強語言建模 169
8.7 小結 170
第9章 對齊語言模型與人類偏好 171
9.1 基於人類反饋進行微調 172
9.1.1 基於人類反饋的強化學習 172
9.1.2 KL散度:前向與反向 174
9.1.3 REINFORCE、TRPO和PPO 174
9.1.4 帶有KL懲罰的強化學習:貝葉斯推理觀點 178
9.1.5 通過分佈控制生成進行語言模型對齊 180
9.1.6 通過f散度最小化統一RLHF和GDC方法 182
9.2 基於語言反饋進行微調 183
9.3 基於監督學習進行微調 184
9.4 基於人工智能反饋的強化學習 185
9.5 基於自我反饋進行迭代優化 188
9.6 基於人類偏好進行預訓練 190
9.7 小結 193
第 10章 減少偏見和有害性 195
10.1 偏見 196
10.2 有害性 199
10.3 偏見和有害性的檢測與減少 200
10.3.1 基於解碼的策略 201
10.3.2 基於提示的脫毒 202
10.3.3 基於數據的策略 204
10.3.4 基於投影和正則化的方法 205
10.3.5 基於風格轉換的方法 205
10.3.6 基於強化學習的微調和基於人類偏好的預訓練 206
10.4 小結 206
第 11章 視覺語言模型 207
11.1 語言處理的多模態落地 207
11.2 不需要額外訓練即可利用預訓練模型 208
11.2.1 視覺引導解碼策略 208
11.2.2 作為大語言模型提示的視覺輸入 209
11.2.3 基於相似性搜索的多模態對齊 212
11.3 輕量級適配 213
11.3.1 鎖定圖像調優 213
11.3.2 作為(凍結)語言模型前綴的學習視覺嵌入 214
11.3.3 視覺-文本交叉註意力融合 216
11.4 圖文聯合訓練 219
11.5 檢索增強視覺語言模型 222
11.6 視覺指令調整 225
11.7 小結 227
第 12章 環境影響 229
12.1 能源消耗和溫室氣體排放 229
12.2 估算訓練模型的排放量 230
12.3 小結 231
參考文獻 232