買這商品的人也買了...
-
$296R語言實用教程 -
$305R 語言統計入門, 2/e (Introductory Statistics with R, 2/e) -
$354R語言入門與實踐 -
$305R語言在統計中的應用 -
$352R語言可以很簡單 第2版 (R for dummies) -
$469R語言入門經典 -
$254R語言基礎與數據科學應用 -
$654R語言之書 編程與統計 -
$128數據統計分析的R軟件應用 -
$906R語言數據可視化之美:專業圖表繪制指南 (增強版) -
$352概率、決策與博弈: 基於R語言介紹 (Probability, Decisions and Games: A Gentle Introduction Using R) -
$509R語言醫學數據分析實戰 -
$374Python 數據分析 -
$331數據可視化 — 基於 R語言 -
$834高級 R語言編程指南, 2/e -
$352深入淺出 R語言數據分析 -
文本探勘:小技術大應用 (附範例光碟)$350$315 -
$569R語言金融分析與建模 -
$505統計建模與 R軟件, 2/e -
$653馬同學圖解線性代數 -
資料庫的核心理論與實務, 8/e$720$706 -
AI 和 ChatGPT 人類和機器共生的未來$580$458 -
$401一本書讀懂 ChatGPT -
從 AI 到 生成式 AI:40個零程式的實作體驗,培養新世代人工智慧素養$560$442 -
新 AI 與新人類:學習、認知與生命的進化新路程$480$408
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$576 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
R語言在近10年來已經發生了日新月異的變化,不僅在內容上更加豐富多彩,
而且在計算效率上也有了大幅的提升。
它被更加廣泛地用於資料視覺化、統計建模、機器學習等領域,
而且還能實現網絡爬蟲、網絡應用開發等功能,成為資料科學領域的全能型工具。
R語言在學術界的地位已經不容置疑,在大資料時代中它是保證研究可重複性的重要工具。
隨著功能的日益完善,R語言已經進軍工業界,並在金融、保險、醫療、
生物和資訊計量等不同的應用場景中大放異彩,潛力不可估量。
儘管R語言能夠實現豐富多樣的實際功能和框架,但是其本質是面向資料的,
因此資料處理是R語言核心中的核心。
如果能夠掌握高效的資料操作技術,就能夠在各類資料分析任務中如魚得水。
本書定位即為“R語言資料處理101”,
希望R語言的使用者能夠在較早的階段就習得基本而有效的資料處理基本技術。
《R語言資料高效處理指南》讀者群體包括在校的大學生、
資料分析從業人員和致力於更加高效地處理資料的所有的R語言使用者。
儘管對資料科學、電腦程式設計、統計學有一定基礎會説明理解本書的內容,
但這不是必需的,來自包括初學者在內的各個層次的讀者群體都能從本書中有所收穫。
讀者在本書中不僅能夠學到資料處理中的實用技術,還能培養在資料分析中的探索性思維。
可以作為零基礎學習資料分析的教程、進階資料分析實用技巧的參考書、
常備查詢的案頭工具書,以及具有一定趣味性的資料分析入門啟蒙書。
作者簡介
黃天元
復旦大學生態學博士在讀,R語言忠實愛好者。
熱愛資料科學與開源工具,致力於利用資料科學迅速積累行業經驗優勢和科學知識發現,
涉獵內容包括但不限於資訊計量、機器學習、資料視覺化、統計建模、知識圖譜等。
已發表SCI論文兩篇,開設有知乎專欄“R語言資料採擷”。
目錄大綱
第1部分 基礎知識...................1
第1章 資料處理總論.......................... 2
1.1 資料處理的定義 ....................2
1.2 資料處理的意義 ...................3
1.3 資料處理基本工具 ..................3
第2章 R 語言程式設計基礎.................. 6
2.1 下載安裝 ...................6
2.2 包的使用 ..................7
2.3 資料類型 .........................8
2.4 資料結構 ........................10
2.5 程控 ........................15
2.6 函數式程式設計 ....................17
第3章 資料處理基本範式....................... 19
第2部分 快速入門...................24
第4章 base-r:基本資料處理................. 25
4.1 資料集及其基本探索 .....................25
4.2 基本範式實現 ................27
4.2.1 創建(read.csv/data.frame) ................................27
4.2.2 刪除(rm) .........................28
4.2.3 檢索(DF[i,j]) ...................28
4.2.4 插入(rbind/cbind) ........................31
4.2.5 排序(order) .....................33
4.2.6 過濾(DF[condition,]) ...................35
4.2.7 匯總(apply) .....................36
4.2.8 分組(aggregate) ...........................36
4.2.9 連接(merge) ....................37
第5章 tidyverse 生態系統:簡潔高效資料處理.................... 40
5.1 tidyverse 生態系統簡介 ........................40
5.2 基本範式實現 ............................41
5.2.1 包的加載(p_load) ........................41
5.2.2 創建(read_csv/tibble) ..................42
5.2.3 刪除(rm) .........................45
5.2.4 檢索(select/slice) .........................46
5.2.5 插入(add/bind) ................50
5.2.6 排序(arrange) ..................54
5.2.7 過濾(filter) ......................56
5.2.8 匯總(summarise) .........................59
5.2.9 分組(group_by) ...........................61
5.2.10 連接(join) .....................63
5.3 高級處理工具 ................67
5.3.1 長寬數據變換(gather/spread) ..........................68
5.3.2 集合運算(intersect/union/setdiff) .....................70
5.3.3 視窗函數(rank/lead/lag/cum) ...........................74
5.3.4 連接數據庫:對SQL 的支持(dbplyr) .........................81
5.3.5 巧妙寫函數:變量的引用 ...............85
第3部分 高級進階...................93
第6章 data.table:高速資料處理............... 94
6.1 data.table 簡介 ...............94
6.2 基本範式實現 ................96
6.3 高級特性探索 ............................... 116
第7章 sparklyr: 分佈式資料處理.................................. 128
7.1 連接R 與Spark:sparklyr 包簡介 ...............................128
7.2 基本操作指南 ...............................130
7.3 存儲機制簡介 ...............................135
7.4 分佈式運算 ..................136
第4部分 實戰應用................. 139
第8章 航班飛行資料演練..................... 140
8.1 nycflights13 資料集探索 ...........................140
8.2 flights14 資料集探索 ....................148
第9章 測試..................... 155
第10章 實用資料處理技巧..................... 157
10.1 資料存取 ....................157
10.1.1 令人頭疼的編碼格式(encoding) ..............................157
10.1.2 讀寫性能競速賽(fst/feather & data.table/readr) ....................158
10.1.3 資料存取轉換的瑞士軍刀(rio) ...................162
10.2 平行計算(doParallel) .........................164
10.3 混合程式設計 ....................168
第11章 實戰案例:網絡爬蟲與文本挖掘............................. 173
11.1 網絡爬取(rvest) .....................174
11.2 文本挖掘(tidytext).................177
第12章 實戰案例:數據塑型與視覺化(ggplot2).....................180
12.1 數據準備 ....................181
12.2 柱狀圖(geom_bar) .................182
12.3 折線圖(geom_line) ................183
12.4 圓形圖(ggpie) ............................184
12.5 一行代碼實現一頁多圖(gridExtra) .......................186
第13章 實戰案例:機器學習.................. 193
13.1 機器學習概述 .............................193
13.2 為什麼要做機器學習 .................193
13.3 如何入門機器學習 .....................194
13.4 資料處理與機器學習 .................195
13.5 案例分析:信貸風險預測模型構建 ...........................195
致謝..............................204
