Introduction to Statistical Machine Learning(美國原版)
暫譯: 統計機器學習導論(美國原版)
Masashi Sugiyama
- 出版商: Morgan Kaufmann
- 出版日期: 2015-09-25
- 售價: $4,150
- 貴賓價: 9.5 折 $3,943
- 語言: 英文
- 頁數: 534
- 裝訂: Paperback
- ISBN: 0128021217
- ISBN-13: 9780128021217
-
相關分類:
Machine Learning
-
相關翻譯:
統計機器學習導論 (Introduction to Statistical Machine Learning) (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
-
大話設計模式$620$490 -
HTML & CSS : 網站設計建置優化之道 (HTML and CSS: Design and Build Websites)$580$493 -
版本控制使用 Git, 2/e (Version Control with Git: Powerful tools and techniques for collaborative software development, 2/e)$580$458 -
Arduino 基礎入門套件 (附範例程式下載連結)$950$903 -
超圖解 Arduino 互動設計入門, 2/e$680$578 -
統計學,最強的商業武器-從買樂透到大數據,全都離不開統計學;不懂統計學,你就等著被騙吧!$320$253 -
ASP.NET MVC 5 網站開發美學$780$616 -
晉身 Linux 高手的最後一哩路:精熟 Shell 程式設計$490$417 -
Node.js 模組參考手冊$580$458 -
成為卓越程式設計師的 38 項必修法則 (Becoming a Better Programmer: A Handbook for People Who Care About Code)$680$537 -
Docker 入門與實戰$450$356 -
一次學會 Revit 2016 - Architecture、MEP、Structure (適用2016/2015)$520$411 -
完整學會 Git, GitHub, Git Server 的24堂課$360$284 -
用 Arduino 全面打造物聯網$420$332 -
Hadoop + Spark 大數據巨量分析與機器學習整合開發實戰$620$484 -
讓網路上的每個封包都無所遁形:精用 Wireshark$590$502 -
Kali Linux 滲透測試工具, 2/e$500$395 -
最新 HTML5 + CSS3 網頁程式設計, 2/e$520$442 -
網路竟然這麼危險!阿里巴巴首席安全專家教你全方位保護網站, 3/e$540$459 -
讓我們 LINE 在一起! 2016 最新版! - LINE Keep‧禮品小舖‧換手機完整保留LINE聊天記錄、影片、照片、好友、群組$280$238 -
Metasploitable|白帽駭客新兵訓練營$380$300 -
Python 初學特訓班 (增訂版) (附250分鐘影音教學/範例程式)$480$379 -
Deep Learning|用 Python 進行深度學習的基礎理論實作$580$458 -
鳥哥的 Linux 基礎學習訓練教材$480$408 -
為你自己學 Git$500$425
相關主題
商品描述
Machine learning allows computers to learn and discern patterns without actually being programmed. When Statistical techniques and machine learning are combined together they are a powerful tool for analysing various kinds of data in many computer science/engineering areas including, image processing, speech processing, natural language processing, robot control, as well as in fundamental sciences such as biology, medicine, astronomy, physics, and materials.
Introduction to Statistical Machine Learning provides a general introduction to machine learning that covers a wide range of topics concisely and will help you bridge the gap between theory and practice. Part I discusses the fundamental concepts of statistics and probability that are used in describing machine learning algorithms. Part II and Part III explain the two major approaches of machine learning techniques; generative methods and discriminative methods. While Part III provides an in-depth look at advanced topics that play essential roles in making machine learning algorithms more useful in practice. The accompanying MATLAB/Octave programs provide you with the necessary practical skills needed to accomplish a wide range of data analysis tasks.
- Provides the necessary background material to understand machine learning such as statistics, probability, linear algebra, and calculus.
- Complete coverage of the generative approach to statistical pattern recognition and the discriminative approach to statistical machine learning.
- Includes MATLAB/Octave programs so that readers can test the algorithms numerically and acquire both mathematical and practical skills in a wide range of data analysis tasks
- Discusses a wide range of applications in machine learning and statistics and provides examples drawn from image processing, speech processing, natural language processing, robot control, as well as biology, medicine, astronomy, physics, and materials.
商品描述(中文翻譯)
機器學習使計算機能夠學習和辨識模式,而無需實際編程。當統計技術與機器學習結合時,它們成為分析各種數據的強大工具,應用於許多計算機科學和工程領域,包括圖像處理、語音處理、自然語言處理、機器人控制,以及生物學、醫學、天文學、物理學和材料等基礎科學。
《統計機器學習導論》提供了機器學習的一般介紹,簡明扼要地涵蓋了廣泛的主題,幫助您彌合理論與實踐之間的鴻溝。第一部分討論了描述機器學習算法所需的統計和概率的基本概念。第二部分和第三部分解釋了機器學習技術的兩種主要方法:生成方法和判別方法。第三部分深入探討了在實踐中使機器學習算法更有用的高級主題。隨附的 MATLAB/Octave 程序為您提供了完成各種數據分析任務所需的實用技能。
- 提供理解機器學習所需的背景材料,如統計學、概率論、線性代數和微積分。
- 完整涵蓋統計模式識別的生成方法和統計機器學習的判別方法。
- 包含 MATLAB/Octave 程序,讓讀者可以數值測試算法,並在各種數據分析任務中獲得數學和實用技能。
- 討論機器學習和統計的廣泛應用,並提供來自圖像處理、語音處理、自然語言處理、機器人控制,以及生物學、醫學、天文學、物理學和材料的例子。
