An Introduction to Game Theory (IE-Paperback)
暫譯: 博弈論入門 (IE-平裝本)

Martin J. Osborne

買這商品的人也買了...

相關主題

商品描述

<內容簡介>

An Introduction to Game Theory, by Martin J. Osborne, presents the main principles of game theory and shows how they can be used to understand economic, social, political, and biological phenomena. The book introduces in an accessible manner the main ideas behind the theory rather than their mathematical expression. All concepts are defined precisely, and logical reasoning is used throughout. The book requires an understanding of basic mathematics but assumes no specific knowledge of economics, political science, or other social or behavioral sciences.

<章節目錄>
Preface
Each chapter ends with notes.
1. Introduction
1.1. What is Game Theory?
1.1.1. An Outline of the History of Game Theory
1.1.2. John von Neumann
1.2. The Theory of Rational Choice
1.3. Coming Attractions: Interacting Decision-Makers
I. GAMES WITH PERFECT INFORMATION
2. Nash Equilibrium: Theory
2.1. Strategic Games
2.2. Example: The Prisoner's Dilemma
2.3. Example: Bach or Stravinsky?
2.4. Example: Matching Pennies
2.5. Example: The Stag Hunt
2.6. Nash Equilibrium
2.6.1. John F. Nash, Jr.
2.6.2. Studying Nash Equilibrium Experimentally
2.7. Examples of Nash Equilibrium
2.7.1. Experimental Evidence on the Prisoner's Dilemma
2.7.2. Focal Points
2.8. Best Response Functions
2.9. Dominated Actions
2.10. Equilibrium in a Single Population: Symmetric Games and Symmetric Equilibria
3. Nash Equilibrium: Illustrations
3.1. Cournot's Model of Oligopoly
3.2. Bertrand's Model of Oligopoly
3.2.1. Cournot, Bertrand, and Nash: Some Historical Notes
3.3. Electoral Competition
3.4. The War of Attrition
3.5. Auctions
3.5.1. Auctions from Babylonia to eBay
3.6. Accident Law
4. Mixed Strategy Equilibrium
4.1. Introduction
4.1.1. Some Evidence on Expected Payoff Functions
4.2. Strategic Games in Which Players May Randomize
4.3. Mixed Strategy Nash Equilibrium
4.4. Dominated Actions
4.5. Pure Equilibria When Randomization is Allowed
4.6. Illustration: Expert Diagnosis
4.7. Equilibrium in a Single Population
4.8. Illustration: Reporting a Crime
4.8.1. Reporting a Crime: Social Psychology and Game Theory
4.9. The Formation of Players' Beliefs
4.10. Extension: Finding All Mixed Strategy Nash Equilibria
4.11. Extension: Games in Which Each Player Has a Continuum of Actions
4.12. Appendix: Representing Preferences by Expected Payoffs
5. Extensive Games with Perfect Information: Theory
5.1. Extensive Games with Perfect Information
5.2. Strategies and Outcomes
5.3. Nash Equilibrium
5.4. Subgame Perfect Equilibrium
5.5. Finding Subgame Perfect Equilibria of Finite Horizon Games: Backward Induction
5.5.1. Ticktacktoe, Chess, and Related Games
6. Extensive Games With Perfect Information: Illustrations
6.1. The Ultimatum Game, the Holdup Game, and Agenda Control
6.1.1. Experiments on the Ultimatum Game
6.2. Stackelberg's Model of Duopoly
6.3. Buying Votes
6.4. A Race
7. Extensive Games With Perfect Information: Extensions and Discussion
7.1. Allowing for Simultaneous Moves
7.1.1. More Experimental Evidence on Subgame Perfect Equilibrium
7.2. Illustration: Entry into a Monopolized Industry
7.3. Illustration: Electoral Competition with Strategic Voters
7.4. Illustration: Committee Decision-Making
7.5. Illustration: Exit from a Declining Industry
7.6. Allowing for Exogenous Uncertainty
7.7. Discussion: Subgame Perfect Equilibrium and Backward Induction
7.7.1. Experimental Evidence on the Centipede Game
8. Coalitional Games and the Core
8.1. Coalitional Games
8.2. The Core
8.3. Illustration: Ownership and the Distribution of Wealth
8.4. Illustration: Exchanging Homogeneous Horses
8.5. Illustration: Exchanging Heterogeneous Houses
8.6. Illustration: Voting
8.7. Illustration: Matching
8.7.1. Matching Doctors with Hospitals
8.8. Discussion: Other Solution Concepts
II. GAMES WITH IMPERFECT INFORMATION
9.1. Motivational Examples
9.2. General Definitions
9.3. Two Examples Concerning Information
9.4. Illustration: Cournot's Duopoly Game with Imperfect Information
9.5. Illustration: Providing a Public Good
9.6. Illustration: Auctions
9.6.1. Auctions of the Radio Spectrum
9.7. Illustration: Juries
9.8. Appendix: Auctions with an Arbitrary Distribution of Valuations
10. Extensive Games with Imperfect Information
10.1. Extensive Games with Imperfect Information
10.2. Strategies
10.3. Nash Equilibrium
10.4. Beliefs and Sequential Equilibrium
10.5. Signaling Games.
10.6. Illustration: Conspicuous Expenditure as a Signal of Quality
10.7. Illustration: Education as a Signal Of Ability
10.8. Illustration: Strategic Information Transmission
10.9. Illustration: Agenda Control with Imperfect Information
III. VARIANTS AND EXTENSIONS
11. Strictly Competitive Games and Maxminimization
11.1. Maxminimization
11.2. Maxminimization and Nash Equilibrium
11.3. Strictly Competitive Games
11.4. Maxminimization and Nash Equilibrium in Strictly Competitive Games
11.4.1. Maxminimization: Some History
11.4.2. Empirical Tests: Experiments, Tennis, and Soccer
12. Rationalizability
12.1. Rationalizability
12.2. Iterated Elimination of Strictly Dominated Actions
12.3. Iterated Elimination of Weakly Dominated Actions
12.4. Dominance Solvability
13. Evolutionary Equilibrium
13.1. Monomorphic Pure Strategy Equilibrium
13.1.1. Evolutionary Game Theory: Some History
13.2. Mixed Strategies and Polymorphic Equilibrium
13.3. Asymmetric Contests
13.3.1. Side-blotched lizards
13.3.2. Explaining the Outcomes of Contests in Nature
13.4. Variation on a Theme: Sibling Behavior
13.5. Variation on a Theme: The Nesting Behavior of Wasps
13.6. Variation on a Theme: The Evolution of the Sex Ratio
14. Repeated Games: The Prisoner's Dilemma
14.1. The Main Idea
14.2. Preferences
14.3. Repeated Games
14.4. Finitely Repeated Prisoner's Dilemma
14.5. Infinitely Repeated Prisoner's Dilemma
14.6. Strategies in an Infinitely Repeated Prisoner's Dilemma
14.7. Some Nash Equilibria of an Infinitely Repeated Prisoner's Dilemma
14.8. Nash Equilibrium Payoffs of an Infinitely Repeated Prisoner's Dilemma
14.8.1. Experimental Evidence
14.9. Subgame Perfect Equilibria and the One-Deviation Property
14.9.1. Axelrod's Tournaments
14.10. Some Subgame Perfect Equilibria of an Infinitely Repeated Prisoner's Dilemma
14.10.1. Reciprocal Altruism Among Sticklebacks
14.11. Subgame Perfect Equilibrium Payoffs of an Infinitely Repeated Prisoner's Dilemma
14.11.1. Medieval Trade Fairs
14.12. Concluding Remarks
15. Repeated Games: General Results
15.1. Nash Equilibria of General Infinitely Repeated Games
15.2. Subgame Perfect Equilibria of General Infinitely Repeated Games
15.3. Finitely Repeated Games
15.4. Variation on a Theme: Imperfect Observability
16. Bargaining
16.1. Bargaining as an Extensive Game
16.2. Illustration: Trade in a Market
16.3. Nash's Axiomatic Model
16.4. Relation Between Strategic and Axiomatic Models
17. Appendix: Mathematics
17.1. Numbers
17.2. Sets
17.3. Functions
17.4. Profiles
17.5. Sequences
17.6. Probability
17.7. Proofs

商品描述(中文翻譯)

內容簡介
《博弈論導論》(An Introduction to Game Theory),作者馬丁·J·奧斯本(Martin J. Osborne),介紹了博弈論的主要原則,並展示了如何利用這些原則來理解經濟、社會、政治和生物現象。本書以易於理解的方式介紹了理論背後的主要思想,而非其數學表達。所有概念都被精確定義,並貫穿使用邏輯推理。本書要求讀者具備基本數學知識,但不假設對經濟學、政治學或其他社會或行為科學的具體知識。

章節目錄
前言
每章結尾都有註釋。
1. 介紹
1.1. 什麼是博弈論?
1.1.1. 博弈論歷史概述
1.1.2. 約翰·馮·諾伊曼(John von Neumann)
1.2. 理性選擇理論
1.3. 即將到來的吸引力:互動決策者
I. 完全資訊的博弈
2. 奈許均衡:理論
2.1. 策略博弈
2.2. 例子:囚徒困境
2.3. 例子:巴赫或斯特拉文斯基?
2.4. 例子:匹配硬幣
2.5. 例子:獵鹿
2.6. 奈許均衡
2.6.1. 約翰·F·奈許(John F. Nash, Jr.)
2.6.2. 實驗研究奈許均衡
2.7. 奈許均衡的例子
2.7.1. 囚徒困境的實驗證據
2.7.2. 焦點點
2.8. 最佳反應函數
2.9. 被支配的行動
2.10. 單一族群的均衡:對稱博弈和對稱均衡
3. 奈許均衡:插圖
3.1. 庫爾諾(Cournot)的寡頭模型
3.2. 伯特蘭(Bertrand)的寡頭模型
3.2.1. 庫爾諾、伯特蘭和奈許:一些歷史筆記
3.3. 選舉競爭
3.4. 消耗戰
3.5. 拍賣
3.5.1. 從巴比倫到eBay的拍賣
3.6. 意外法
4. 混合策略均衡
4.1. 介紹
4.1.1. 有關期望收益函數的一些證據
4.2. 玩家可以隨機化的策略博弈
4.3. 混合策略奈許均衡
4.4. 被支配的行動
4.5. 當允許隨機化時的純均衡
4.6. 插圖:專家診斷
4.7. 單一族群的均衡
4.8. 插圖:報告犯罪
4.8.1. 報告犯罪:社會心理學與博弈論
4.9. 玩家信念的形成
4.10. 擴展:尋找所有混合策略奈許均衡
4.11. 擴展:每個玩家擁有連續行動的博弈
4.12. 附錄:通過期望收益表示偏好
5. 完全資訊的廣泛博弈:理論
5.1. 完全資訊的廣泛博弈
5.2. 策略與結果
5.3. 奈許均衡
5.4. 子博弈完美均衡
5.5. 尋找有限視野博弈的子博弈完美均衡:反向推理
5.5.1. 井字遊戲、棋類及相關遊戲
6. 完全資訊的廣泛博弈:插圖
6.1. 最後通牒遊戲、擒賊遊戲與議程控制
6.1.1. 最後通牒遊戲的實驗
6.2. 斯塔克爾伯格(Stackelberg)的雙頭壟斷模型
6.3. 買票
6.4. 一場競賽
7. 完全資訊的廣泛博弈:擴展與討論
7.1. 允許同時行動
7.1.1. 有關子博弈完美均衡的更多實驗證據
7.2. 插圖:進入壟斷行業
7.3. 插圖:具有策略選民的選舉競爭
7.4. 插圖:委員會決策
7.5. 插圖:退出衰退行業
7.6. 允許外生不確定性
7.7. 討論:子博弈完美均衡與反向推理
7.7.1. 有關蜈蚣遊戲的實驗證據
8. 聯盟博弈與核心
8.1. 聯盟博弈
8.2. 核心
8.3. 插圖:所有權與財富分配
8.4. 插圖:交換同質馬
8.5. 插圖:交換異質房屋
8.6. 插圖:投票
8.7. 插圖:匹配
8.7.1. 將醫生與醫院匹配
8.8. 討論:其他解決概念
II. 不完全資訊的博弈
9.1. 動機範例
9.2. 一般定義
9.3. 兩個有關資訊的例子
9.4. 插圖:庫爾諾的不完全資訊雙頭壟斷遊戲
9.5. 插圖:提供公共物品
9.6. 插圖:拍賣
9.6.1. 無線電頻譜的拍賣
9.7. 插圖:陪審團
9.8. 附錄:具有任意估值分佈的拍賣
10. 不完全資訊的廣泛博弈
10.1. 不完全資訊的廣泛博弈
10.2. 策略
10.3. 奈許均衡
10.4. 信念與序列均衡
10.5. 信號博弈。
10.6. 插圖:顯著支出作為質量的信號
10.7. 插圖:教育作為能力的信號
10.8. 插圖:策略性資訊傳遞
10.9. 插圖:不完全資訊的議程控制
III. 變體與擴展
11. 嚴格競爭博弈與最大最小化
11.1. 最大最小化
11.2. 最大最小化與奈許均衡
11.3. 嚴格競爭博弈
11.4. 嚴格競爭博弈中的最大最小化與奈許均衡
11.4.1. 最大最小化:一些歷史
11.4.2. 實證測試:實驗、網球與足球
12. 理性化
12.1. 理性化
12.2. 嚴格支配行動的迭代消除
12.3. 弱支配行動的迭代消除
12.4. 支配可解性
13. 演化均衡
13.1. 單型純策略均衡
13.1.1. 演化博弈論:一些歷史
13.2. 混合策略與多型均衡
13.3. 不對稱競賽
13.3.1. 側斑蜥蜴
13.3.2. 解釋自然界中的競賽結果
13.4. 主題變化:兄弟行為
13.5. 主題變化:黃蜂的築巢行為
13.6. 主題變化:性別比例的演化
14. 重複博弈:囚徒困境
14.1. 主要思想
14.2. 偏好
14.3. 重複博弈
14.4. 有限重複囚徒困境
14.5. 無限重複囚徒困境
14.6. 無限重複囚徒困境中的策略
14.7. 無限重複囚徒困境的一些奈許均衡
14.8. 無限重複囚徒困境的奈許均衡收益
14.8.1. 實驗證據
14.9. 子博弈完美均衡與一次偏差性質
14.9.1. 阿克塞爾羅德的錦標賽
14.10. 無限重複囚徒困境的一些子博弈完美均衡
14.10.1. 釘子魚之間的互惠利他主義
14.11. 無限重複囚徒困境的子博弈完美均衡收益
14.11.1. 中世紀貿易博覽會
14.12. 總結
15. 重複博弈:一般結果
15.1. 一般無限重複博弈的奈許均衡
15.2. 一般無限重複博弈的子博弈完美均衡
15.3. 有限重複博弈
15.4. 主題變化:不完全可觀察性
16. 談判
16.1. 談判作為廣泛博弈
16.2. 插圖:市場中的交易
16.3. 奈許的公理模型
16.4. 策略模型與公理模型之間的關係
17. 附錄:數學
17.1. 數字
17.2. 集合
17.3. 函數
17.4. 配置
17.5. 序列
17.6. 機率
17.7. 證明