Practical Applications of Data Mining (Paperback)
暫譯: 數據挖掘的實用應用 (平裝本)
Sang C. Suh
- 出版商: Jones and Bartlett
- 出版日期: 2011-01-20
- 定價: $1,100
- 售價: 9.5 折 $1,045
- 語言: 英文
- 頁數: 420
- 裝訂: Paperback
- ISBN: 0763785873
- ISBN-13: 9780763785871
-
相關分類:
Data-mining
立即出貨 (庫存=1)
買這商品的人也買了...
-
$550$468 -
$1,323Introduction to Machine Learning, 2/e (Hardcover)
-
$620$490 -
$750$593 -
$550$435 -
$580$458 -
$780$515 -
$680$537 -
$680$537 -
$580$452 -
$880$686 -
$490$417 -
$360$284 -
$490$387 -
$680$537 -
$650$514 -
$450$356 -
$820$541 -
$320$253 -
$360$281 -
$360$284 -
$420$332 -
$520$411 -
$520$411 -
$940$700
相關主題
商品描述
Practical Applications of Data Mining emphasizes both theory and applications of data mining algorithms. Various topics of data mining techniques are identified and described throughout, including clustering, association rules, rough set theory, probability theory, neural networks, classification, and fuzzy logic. Each of these techniques is explored with a theoretical introduction and its effectiveness is demonstrated with various chapter examples. This book will help any database and IT professional understand how to apply data mining techniques to real-world problems. Following an introduction to data mining principles, Practical Applications of Data Mining introduces association rules to describe the generation of rules as the first step in data mining. It covers classification and clustering methods to show how data can be classified to retrieve information from data. Statistical functions and rough set theory are discussed to demonstrate how statistical and rough set formulas can be used for data analytics and knowledge discovery. Neural networks is an important branch in computational intelligence. It is introduced and explored in the text to investigate the role of neural network algorithms in data analytics.
商品描述(中文翻譯)
《資料探勘的實務應用》強調資料探勘演算法的理論與應用。書中識別並描述了各種資料探勘技術的主題,包括聚類、關聯規則、粗集理論、機率論、神經網路、分類和模糊邏輯。每種技術都以理論介紹的方式進行探討,並透過各章節的範例展示其有效性。本書將幫助任何資料庫和IT專業人士了解如何將資料探勘技術應用於現實世界的問題。
在介紹資料探勘原則之後,《資料探勘的實務應用》引入關聯規則,描述生成規則作為資料探勘的第一步。它涵蓋了分類和聚類方法,以展示如何對資料進行分類以從中檢索資訊。書中討論了統計函數和粗集理論,以展示如何使用統計和粗集公式進行資料分析和知識發現。神經網路是計算智能中的一個重要分支,書中介紹並探討了神經網路演算法在資料分析中的角色。