Cloud Native Geospatial Analytics with Apache Sedona: A Hands-On Guide for Working with Large-Scale Spatial Data
暫譯: 使用 Apache Sedona 的雲原生地理空間分析:大型空間數據實作指南

Tokaj, Pawel, Yu, Jia, Sarwat, Mo

  • 出版商: O'Reilly
  • 出版日期: 2026-01-13
  • 售價: $2,390
  • 貴賓價: 9.5$2,271
  • 語言: 英文
  • 頁數: 336
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1098173996
  • ISBN-13: 9781098173999
  • 相關分類: 大數據 Big-dataPython
  • 尚未上市,無法訂購

商品描述

Navigating the complexities of large-scale spatial data can be daunting. In order to unleash the power of massive and complex datasets, you'll need a cutting-edge tool like Apache Sedona. This innovative distributed computing system, designed specifically for spatial data, has diverse applications in fields such as mobility, telematics, agriculture, climate science, and more. This book serves as your guide to leveraging this tool, along with other technologies, to unlock the potential of geospatial analytics.

Authors Pawel Tokaj, Jia Yu, and Mo Sarwat provide practical solutions to the challenges of working with geospatial data at scale. Ideal for developers, data scientists, engineers, and analysts, this guide uses real-world examples to help you integrate Python data ecosystems, apply machine learning, build geospatial data lakehouses, and handle modern geospatial data formats like GeoParquet.

  • Understand how Apache Sedona helps data practitioners address challenges with geospatial data
  • Learn how to run Apache Sedona, both locally and in cloud environments
  • Efficiently load, query, and analyze geospatial datasets using spatial SQL
  • Employ machine learning techniques to derive strategy-defining insights from spatial data
  • Manage and optimize large-scale geospatial data within a data lakehouse architecture

商品描述(中文翻譯)

導航大型空間數據的複雜性可能令人畏懼。為了釋放龐大且複雜數據集的潛力,您需要一個尖端工具,如 Apache Sedona。這個專為空間數據設計的創新分散式計算系統,在移動性、遠端資訊、農業、氣候科學等領域有著多樣的應用。本書將作為您利用這個工具及其他技術的指南,以解鎖地理空間分析的潛力。

作者 Pawel Tokaj、Jia Yu 和 Mo Sarwat 提供了針對大規模處理地理空間數據挑戰的實用解決方案。本指南非常適合開發人員、數據科學家、工程師和分析師,使用真實世界的範例幫助您整合 Python 數據生態系統、應用機器學習、構建地理空間數據湖屋,並處理現代地理空間數據格式,如 GeoParquet。

- 了解 Apache Sedona 如何幫助數據從業者解決地理空間數據的挑戰
- 學習如何在本地和雲端環境中運行 Apache Sedona
- 使用空間 SQL 高效加載、查詢和分析地理空間數據集
- 應用機器學習技術從空間數據中獲取策略定義的見解
- 在數據湖屋架構中管理和優化大規模地理空間數據