Mining of Massive Datasets, 2/e (Hardcover)
暫譯: 大規模數據集挖掘(第二版)

Jure Leskovec, Anand Rajaraman, Jeffrey David Ullman

買這商品的人也買了...

相關主題

商品描述

Written by leading authorities in database and Web technologies, this book is essential reading for students and practitioners alike. The popularity of the Web and Internet commerce provides many extremely large datasets from which information can be gleaned by data mining. This book focuses on practical algorithms that have been used to solve key problems in data mining and can be applied successfully to even the largest datasets. It begins with a discussion of the map-reduce framework, an important tool for parallelizing algorithms automatically. The authors explain the tricks of locality-sensitive hashing and stream processing algorithms for mining data that arrives too fast for exhaustive processing. Other chapters cover the PageRank idea and related tricks for organizing the Web, the problems of finding frequent itemsets and clustering. This second edition includes new and extended coverage on social networks, machine learning and dimensionality reduction.

商品描述(中文翻譯)

由資料庫和網路技術領域的權威專家撰寫,本書對於學生和實務工作者來說都是必讀之作。網路和網路商務的普及提供了許多極大的數據集,這些數據集可以通過資料探勘提取信息。本書專注於實用的演算法,這些演算法已被用來解決資料探勘中的關鍵問題,並且可以成功應用於即使是最大的數據集。書中首先討論了 map-reduce 框架,這是一個自動平行化演算法的重要工具。作者解釋了局部敏感哈希(locality-sensitive hashing)和流處理演算法的技巧,以便處理到達速度過快而無法進行全面處理的數據。其他章節涵蓋了 PageRank 概念及其相關技巧,用於組織網路,尋找頻繁項集和聚類的問題。本書的第二版新增和擴展了社交網路、機器學習和降維的內容。