Probability and Computing: Randomization and Probabilistic Techniques in Algorithms and Data Analysis, 2/e (Hardcover)
Michael Mitzenmacher, Eli Upfal
- 出版商: Cambridge
- 出版日期: 2017-07-03
- 售價: $1,680
- 貴賓價: 9.8 折 $1,646
- 語言: 英文
- 頁數: 484
- 裝訂: Hardcover
- ISBN: 110715488X
- ISBN-13: 9781107154889
-
相關分類:
Data Science、Algorithms-data-structures
立即出貨 (庫存=1)
買這商品的人也買了...
-
$1,176Database Management Systems, 3/e (IE-Paperback)
-
$1,710$1,620 -
$450$356 -
$1,615$1,530 -
$250Scrum 捷徑-敏捷策略工具與技巧 (Scrum Shortcuts without Cutting Corners: Agile Tactics, Tools, & Tips)
-
$599$569 -
$580$458 -
$281超越需求敏捷思維模式下的分析 (Beyond Requirements: Analysis with an Agile Mindset)
-
$590$460 -
$500$395 -
$580$458 -
$4,020$3,819 -
$390$308 -
$450$356 -
$480$379 -
$580$458 -
$699$629 -
$320$253 -
$474$450 -
$1,200Eloquent JavaScript : A Modern Introduction to Programming, 3/e (Paperback)
-
$454大規模 MIMO 傳輸理論與關鍵技術
-
$1,450Probability: Theory and Examples, 5/e (Hardcover)
-
$1,800$1,710 -
$1,646Probability and Random Processes, 4/e (Paperback)
-
$1,0195G 大規模天線增強技術
相關主題
商品描述
Greatly expanded, this new edition requires only an elementary background in discrete mathematics and offers a comprehensive introduction to the role of randomization and probabilistic techniques in modern computer science. Newly added chapters and sections cover topics including normal distributions, sample complexity, VC dimension, Rademacher complexity, power laws and related distributions, cuckoo hashing, and the Lovasz Local Lemma. Material relevant to machine learning and big data analysis enables students to learn modern techniques and applications. Among the many new exercises and examples are programming-related exercises that provide students with excellent training in solving relevant problems. This book provides an indispensable teaching tool to accompany a one- or two-semester course for advanced undergraduate students in computer science and applied mathematics.
商品描述(中文翻譯)
這本新版書籍經過大幅擴充,只需要基礎的離散數學背景,並提供了對於隨機化和概率技巧在現代計算機科學中的全面介紹。新增的章節和部分涵蓋了正態分佈、樣本複雜度、VC維度、Rademacher複雜度、冪律和相關分佈、布谷鳥雜湊以及Lovasz局部引理等主題。與機器學習和大數據分析相關的內容使學生能夠學習現代技術和應用。許多新的習題和例子中包含了與程式設計相關的練習,為學生提供了解決相關問題的優秀訓練。這本書是一個不可或缺的教學工具,適用於計算機科學和應用數學高年級本科生的一學期或兩學期課程。