Machine Learning Upgrade: A Data Scientist's Guide to Mlops, Llms, and ML Infrastructure: A Data Scientist's Guide to Mlops, Llms, and ML Infrastructu

Kehrer, Kristen, Kaiser, Caleb

  • 出版商: Wiley
  • 出版日期: 2024-08-20
  • 售價: $1,500
  • 貴賓價: 9.5$1,425
  • 語言: 英文
  • 頁數: 240
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1394249632
  • ISBN-13: 9781394249633
  • 相關分類: LangChainMachine Learning
  • 立即出貨 (庫存=1)

相關主題

商品描述

A much-needed guide to implementing new technology in workspaces

From experts in the field comes Machine Learning Upgrade: A Data Scientist's Guide to MLOps, LLMs, and ML Infrastructure, a book that provides data scientists and managers with best practices at the intersection of management, large language models (LLMs), machine learning, and data science. This groundbreaking book will change the way that you view the pipeline of data science. The authors provide an introduction to modern machine learning, showing you how it can be viewed as a holistic, end-to-end system--not just shiny new gadget in an otherwise unchanged operational structure. By adopting a data-centric view of the world, you can begin to see unstructured data and LLMs as the foundation upon which you can build countless applications and business solutions. This book explores a whole world of decision making that hasn't been codified yet, enabling you to forge the future using emerging best practices.

  • Gain an understanding of the intersection between large language models and unstructured data
  • Follow the process of building an LLM-powered application while leveraging MLOps techniques such as data versioning and experiment tracking
  • Discover best practices for training, fine tuning, and evaluating LLMs
  • Integrate LLM applications within larger systems, monitor their performance, and retrain them on new data

This book is indispensable for data professionals and business leaders looking to understand LLMs and the entire data science pipeline.

商品描述(中文翻譯)

一份急需的工作空間新技術實施指南

來自該領域專家的《Machine Learning Upgrade: A Data Scientist's Guide to MLOps, LLMs, and ML Infrastructure》一書,為數據科學家和管理者提供了在管理、大型語言模型(LLMs)、機器學習和數據科學交匯處的最佳實踐。這本開創性的書籍將改變你對數據科學流程的看法。作者介紹了現代機器學習,展示了它如何被視為一個整體的端到端系統,而不僅僅是運營結構中一個閃亮的新玩意。通過採用以數據為中心的世界觀,你可以開始將非結構化數據和LLMs視為建立無數應用和商業解決方案的基礎。本書探索了一個尚未被編碼的決策世界,使你能夠利用新興的最佳實踐來塑造未來。

- 瞭解大型語言模型與非結構化數據之間的交集
- 跟隨構建LLM驅動應用的過程,同時利用MLOps技術,如數據版本控制和實驗追蹤
- 發現訓練、微調和評估LLMs的最佳實踐
- 將LLM應用整合到更大的系統中,監控其性能,並在新數據上進行再訓練

這本書對於希望理解LLMs和整個數據科學流程的數據專業人士和商業領導者來說是不可或缺的。

作者簡介

Kristen Kehrer has been providing innovative and practical statistical modeling solutions since 2010. In 2018, she achieved recognition as a LinkedIn Top Voice in Data Science & Analytics. Kristen is also the founder of Data Moves Me, LLC.

Caleb Kaiser is a Full Stack Engineer at Comet. Caleb was previously on the Founding Team at Cortex Labs. Caleb also worked at Scribe Media on the Author Platform Team.

作者簡介(中文翻譯)

Kristen Kehrer 自 2010 年以來一直提供創新且實用的統計建模解決方案。2018 年,她獲得了 LinkedIn 數據科學與分析領域的頂尖聲音認可。Kristen 也是 Data Moves Me, LLC 的創辦人。

Caleb Kaiser 是 Comet 的全端工程師。Caleb 之前是 Cortex Labs 的創始團隊成員。他也曾在 Scribe Media 的作者平台團隊工作。