Data Scientists at Work (Paperback)
Sebastian Gutierrez
- 出版商: Apress
- 出版日期: 2014-12-08
- 售價: $1,500
- 貴賓價: 9.5 折 $1,425
- 語言: 英文
- 頁數: 364
- 裝訂: Paperback
- ISBN: 1430265981
- ISBN-13: 9781430265986
-
相關分類:
大數據 Big-data、Data Science
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$690$587 -
$590$466 -
$550$495 -
$980$774 -
$580$458 -
$680$578 -
$650$553 -
$790$672 -
$580$458 -
$360$252 -
$580$452 -
$780$663 -
$720$562 -
$280$238 -
$550$435 -
$620$484 -
$580$458 -
$580$458 -
$380$323 -
$680$537 -
$450$356 -
$350$277 -
$680$530 -
$380$19 -
$680$537
相關主題
商品描述
Through incisive in-depth interviews, this book mines the what, how, and why of the practice of data science from the stories, ideas, shop talk, and forecasts of its preeminent practitioners across diverse industries: social network (Yann LeCun, Facebook); professional network (Daniel Tunkelang, LinkedIn); venture capital (Roger Ehrenberg, IA Ventures); enterprise cloud computing and neuroscience (Eric Jonas, formerly Salesforce.com); newspaper and media (Chris Wiggins, The New York Times); streaming television (Caitlin Smallwood, Netflix); music forecast (Victor Hu, Next Big Sound); strategic intelligence (Amy Heineike, Quid); oceanographic big data (André Karpištšenko, Planet OS); geospatial marketing intelligence (Jonathan Lenaghan, PlaceIQ); advertising (Claudia Perlich, Dstillery); fashion e-commerce (Anna Smith, Rent the Runway); specialty retail (Erin Shellman, Nordstrom); email marketing (John Foreman, MailChimp); predictive sales intelligence (Kira Radinsky, SalesPredict); and humanitarian nonprofit (Jake Porway, DataKind).
Each of these data scientists shares how he or she tailors the torrent-taming techniques of big data, data visualization, search, and statistics to specific jobs by dint of ingenuity, imagination, patience, and passion. Data Scientists at Work parts the curtain on the interviewees' earliest data projects, how they became data scientists, their discoveries and surprises in working with data, their thoughts on the past, present, and future of the profession, their experiences of team collaboration within their organizations, and the insights they have gained as they get their hands dirty refining mountains of raw data into objects of commercial, scientific, and educational value for their organizations and clients.
Readers will learn:
- How the data scientists arrived at their positions and what advice they have for others
- What projects the data scientists work on and the techniques and tools they apply
- How to frame problems that data science can solve
- Where data scientists think the most exciting opportunities lie in the future of data science
- How data scientists add value to their organizations and help people around the world
Who this book is for
The primary readership for this book is general-interest readers interested in this hot new profession and in the nature of the people who work up the readers' own data trails. The secondary readerships are (a) scientists, mathematicians, and students in feeder disciplines who are interested in scouting the vocational prospects and daily working conditions of data scientists with a view to becoming data scientists themselves, and (b) of business colleagues and managers seeking to understand and collaborate with data scientists to integrate their data management and interpretation capabilities into the competitive intelligence capabilities of the enterprise.
Table of Contents
Chapter 2. Caitlin Smallwood (Netflix)
Chapter 3. Yann LeCun (Facebook)
Chapter 4. Erin Shellman (Nordstrom)
Chapter 5. Daniel Tunkelang (LinkedIn)
Chapter 6. John Foreman (MailChimp)
Chapter 7. Roger Ehrenberg (IA Ventures)
Chapter 8. Claudia Perlich (Dstillery)
Chapter 9. Jonathan Lenaghan (PlaceIQ)
Chapter 10. Anna Smith (Rent The Runway)
Chapter 11. Andre Karpistsenko (Planet OS)
Chapter 12. Amy Heineike (Quid)
Chapter 13. Victor Hu (Next Big Sound)
Chapter 14. Kira Radinsky (SalesPredict)
Chapter 15. Eric Jonas (Independent Scientist)
Chapter 16. Jake Porway (DataKind)
商品描述(中文翻譯)
《Data Scientists at Work》是一本收錄了全球最具影響力和創新的十六位資料科學家的訪談集,他們來自這個炙手可熱的新興職業的各個領域。根據哈佛商業評論的說法,「資料科學家是21世紀最性感的工作」。根據麥肯錫的報告,到2018年,美國將面臨19萬名熟練的資料科學家短缺。
透過深入的訪談,這本書從資料科學的實踐中挖掘了其頂尖從業者在不同行業中的故事、想法、專業術語和預測,揭示了資料科學的「什麼、如何和為什麼」。這些行業包括社交網絡(Facebook的Yann LeCun)、專業網絡(LinkedIn的Daniel Tunkelang)、風險投資(IA Ventures的Roger Ehrenberg)、企業雲計算和神經科學(曾在Salesforce.com工作的Eric Jonas)、報紙和媒體(紐約時報的Chris Wiggins)、流媒體電視(Netflix的Caitlin Smallwood)、音樂預測(Next Big Sound的Victor Hu)、戰略情報(Quid的Amy Heineike)、海洋大數據(Planet OS的Andre Karpištšenko)、地理空間營銷情報(PlaceIQ的Jonathan Lenaghan)、廣告(Dstillery的Claudia Perlich)、時尚電子商務(Rent the Runway的Anna Smith)、特色零售(Nordstrom的Erin Shellman)、電子郵件營銷(MailChimp的John Foreman)、預測銷售情報(SalesPredict的Kira Radinsky)和人道主義非營利組織(DataKind的Jake Porway)。
每位資料科學家分享了他們如何通過獨創性、想像力、耐心和熱情,將大數據、數據可視化、搜索和統計等技術應用於具體工作的方法。《Data Scientists at Work》揭示了受訪者最早的資料項目,他們如何成為資料科學家,他們在處理資料時的發現和驚喜,他們對這個職業的過去、現在和未來的看法,以及他們在組織內進行團隊合作的經驗和洞察力,以及他們如何將大量原始數據轉化為商業、科學和教育價值對象的實踐。
讀者將學到:
- 資料科學家如何獲得他們的職位以及他們對其他人的建議
- 資料科學家從事的項目以及他們應用的技術和工具
- 如何定義資料科學可以解決的問題
- 資料科學家認為未來資料科學最令人興奮的機會在哪裡
- 資料科學家如何為他們的組織增加價值,並幫助世界各地的人們
這本書的主要讀者是對這個炙手可熱的新職業和從事這個職業的人感興趣的一般讀者。次要讀者包括科學家、數學家和與資料科學相關的學生,他們有興趣了解資料科學家的職業前景和日常工作條件,以便成為資料科學家自己;以及企業同事和管理人員,他們希望了解並與資料科學家合作,將他們的數據管理和解讀能力整合到企業的競爭情報能力中。
目錄:
第1章 Chris Wiggins(紐約時報)
第2章 Caitlin Smallwood(Netflix)
第3章 Yann LeCun(Facebook)
第4章 Erin Shellman(Nordstrom)
第5章 Daniel Tunkelang(LinkedIn)
第6章 John Foreman(MailChimp)
第7章 Roger Ehrenberg(IA Ventures)
第8章 Claudia Perlich(Dstillery)
第9章 Jonathan Lenaghan(PlaceIQ)
第10章 Anna Smith(Rent The Runway)
第11章 Andre Karpistsenko(Planet OS)
第12章 Amy Heineike(Quid)
第13章 Victor Hu(Next Big Sound)