Ancient Computers, Part I - Rediscovery, Edition 2
暫譯: 古代電腦,第一部分 - 重新發現,第二版

Stephen Kent Stephenson

  • 出版商: CreateSpace Independ
  • 出版日期: 2013-07-14
  • 售價: $820
  • 貴賓價: 9.5$779
  • 語言: 英文
  • 頁數: 74
  • 裝訂: Paperback
  • ISBN: 1490964371
  • ISBN-13: 9781490964379
  • 相關分類: Key-Value Store
  • 海外代購書籍(需單獨結帳)

商品描述

People, especially historians, have long struggled to appreciate and understand how Ancient Romans, Greeks, Egyptians, and Babylonians, et al, were able to do their arithmetic calculations. Many say the Ancients "probably" used line abacuses or abaci, a.k.a. counting boards. But most then trivialize the possible impact that use would have on the Ancient cultures because they really don't think those abaci would be very powerful and would be extremely hard to use.

The (re-)discovery Ancient Computers documents and explores materialized from the author's experiences in engineering, with a knowledge that design compromises often have to be made; computer programming, especially the different number bases used; the hobby use of a Japanese abacus called the Soroban; and study of the Ancients' numbers and culture.

The bottom line is that the Ancients had a powerful and lightning fast computer; powerful and fast compared to any other calculation method available to them in their time. Features included:
  • multi-base number modes: e.g., sexagesimal, decimal, duodecimal, or nonary;
  • operating on those numbers in two parts: a signed fraction of the base and a signed exponent of the base, equivalent to scientific notation;
  • easy and low-cost expandability; and
  • built-in error checking!
On the "standard" Ancient line abacus doing base-10 calculations, the fraction could have 10 significant digits and the exponent 4. Certainly enough for most modern engineering or scientific problems. If you need more, though, just scribe a few more lines on the abacus and add a few more pebbles to your pouch! By the way, 178 small pebbles will suffice for any problem on the "standard" line abacus. They fit in a pouch that can be easily and comfortably carried in a man's trouser pocket.

I hope you find Ancient Computers interesting and useful.

-Steve Stephenson, July 15, 2010
M.Eng.(Elect.), M.Ed.
Math Teacher (Calculus & Precalculus)
Lowell High, MA


Edition 2 changes some formatting and adds two appendices:
N: Nonary Base (candidate for electronic implementations); and
V: Visualizing Abacus Arithmetic.

Edition 2 is now available as a printed book in addition to the Kindle eBook.

Two DVDs containing the Stephenson Videos are also available on Amazon.com as
Ancient Computers: Part II - Video Users Manual:
  1. How to Use a Counting Board Abacus (1 of 2); and
  2. How the Romans Used a Counting Board Abacus (2 of 2).
-Steve Stephenson, July 15, 2013
Math Teacher (Retired 6/30/2013)

商品描述(中文翻譯)

人們,尤其是歷史學家,長期以來一直在努力理解古羅馬人、古希臘人、古埃及人和巴比倫人等是如何進行算術計算的。許多人認為古人「可能」使用了線性算盤或稱為計算板的工具。但大多數人隨後卻輕視了這種使用對古代文化可能產生的影響,因為他們真的不認為這些算盤會非常強大,且使用起來會非常困難。

古代計算機》的(重新)發現記錄並探討了作者在工程領域的經驗,並認識到設計妥協往往是必須的;計算機編程,特別是使用的不同數字基數;一種名為 Soroban 的日本算盤的愛好使用;以及對古代數字和文化的研究。

最重要的是,古人擁有一種強大且快速的計算機;與他們當時可用的任何其他計算方法相比,這種計算機既強大又快速。其特點包括:
- 多基數數字模式:例如,六十進制、十進制、十二進制或九進制;
- 對這些數字進行兩部分運算:基數的帶符號分數和基數的帶符號指數,相當於科學記數法;
- 易於擴展且成本低廉;以及
- 內建錯誤檢查!

在「標準」的古代線性算盤上進行十進制計算時,分數可以有 10 位有效數字,指數可以有 4 位。這對於大多數現代工程或科學問題來說,絕對足夠了。不過,如果你需要更多,只需在算盤上再劃幾條線,並在你的袋子中再加幾顆小石子!順便提一下,178 顆小石子就足以解決「標準」線性算盤上的任何問題。它們可以放在一個可以輕鬆舒適地放在男士褲子口袋中的袋子裡。

我希望你會覺得《古代計算機》有趣且有用。

-Steve Stephenson, 2010年7月15日
M.Eng.(Elect.), M.Ed.
數學教師(微積分與預備微積分)
麻薩諸塞州洛威爾高中

第二版更改了一些格式並添加了兩個附錄:
N:九進制(電子實現的候選者);以及
V:可視化算盤算術。

第二版現在除了 Kindle 電子書外,還可以作為印刷書籍獲得。

包含 Stephenson 影片的兩張 DVD 也可以在 Amazon.com 上獲得,作為
古代計算機:第二部分 - 影片使用手冊:


  1. 如何使用計算板算盤(1/2);以及

  2. 羅馬人如何使用計算板算盤(2/2)。


-Steve Stephenson, 2013年7月15日
數學教師(於2013年6月30日退休)