Ancient Computers, Part I - Rediscovery, Edition 2

Stephen Kent Stephenson

  • 出版商: CreateSpace Independ
  • 出版日期: 2013-07-14
  • 售價: $800
  • 貴賓價: 9.5$760
  • 語言: 英文
  • 頁數: 74
  • 裝訂: Paperback
  • ISBN: 1490964371
  • ISBN-13: 9781490964379
  • 相關分類: Key-Value Store
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

People, especially historians, have long struggled to appreciate and understand how Ancient Romans, Greeks, Egyptians, and Babylonians, et al, were able to do their arithmetic calculations. Many say the Ancients "probably" used line abacuses or abaci, a.k.a. counting boards. But most then trivialize the possible impact that use would have on the Ancient cultures because they really don't think those abaci would be very powerful and would be extremely hard to use.

The (re-)discovery Ancient Computers documents and explores materialized from the author's experiences in engineering, with a knowledge that design compromises often have to be made; computer programming, especially the different number bases used; the hobby use of a Japanese abacus called the Soroban; and study of the Ancients' numbers and culture.

The bottom line is that the Ancients had a powerful and lightning fast computer; powerful and fast compared to any other calculation method available to them in their time. Features included:
  • multi-base number modes: e.g., sexagesimal, decimal, duodecimal, or nonary;
  • operating on those numbers in two parts: a signed fraction of the base and a signed exponent of the base, equivalent to scientific notation;
  • easy and low-cost expandability; and
  • built-in error checking!
On the "standard" Ancient line abacus doing base-10 calculations, the fraction could have 10 significant digits and the exponent 4. Certainly enough for most modern engineering or scientific problems. If you need more, though, just scribe a few more lines on the abacus and add a few more pebbles to your pouch! By the way, 178 small pebbles will suffice for any problem on the "standard" line abacus. They fit in a pouch that can be easily and comfortably carried in a man's trouser pocket.

I hope you find Ancient Computers interesting and useful.

-Steve Stephenson, July 15, 2010
M.Eng.(Elect.), M.Ed.
Math Teacher (Calculus & Precalculus)
Lowell High, MA


Edition 2 changes some formatting and adds two appendices:
N: Nonary Base (candidate for electronic implementations); and
V: Visualizing Abacus Arithmetic.

Edition 2 is now available as a printed book in addition to the Kindle eBook.

Two DVDs containing the Stephenson Videos are also available on Amazon.com as
Ancient Computers: Part II - Video Users Manual:
  1. How to Use a Counting Board Abacus (1 of 2); and
  2. How the Romans Used a Counting Board Abacus (2 of 2).
-Steve Stephenson, July 15, 2013
Math Teacher (Retired 6/30/2013)

商品描述(中文翻譯)

人們,尤其是歷史學家,長期以來一直努力欣賞和理解古羅馬人、古希臘人、古埃及人和巴比倫人等古代文明如何進行算術計算。許多人說古人「可能」使用線型算盤或計算板,但大多數人對這種使用方式可能產生的影響持輕視態度,因為他們認為這些算盤並不強大,而且使用起來非常困難。

《古代計算機》(Ancient Computers)是作者在工程領域的經驗、對計算機編程的了解(尤其是不同的數字進位制)、對日本珠算(Soroban)的愛好使用以及對古代數字和文化的研究所結合而成的文獻和探索。結論是,古代人擁有一台強大且極速的計算機,相對於當時其他可用的計算方法來說,這台計算機的功能強大且快速。其特點包括:

- 多進位數字模式,例如:六十進制、十進制、十二進制或九進制;
- 對這些數字進行兩部分操作:基數的有符號分數和有符號指數,相當於科學記號;
- 易於擴展且低成本;
- 內建錯誤檢查!

在「標準」的古代線型算盤上進行十進制計算,分數部分可以有10位有效數字,指數部分可以有4位。對於大多數現代工程或科學問題來說,這絕對足夠了。如果需要更多,只需在算盤上刻幾條線,再加幾顆小石子到袋子裡!順便說一下,178顆小石子足以解決「標準」線型算盤上的任何問題。它們可以放在一個袋子裡,輕鬆舒適地放在男士的褲袋中攜帶。

希望您會覺得《古代計算機》有趣且有用。

- Steve Stephenson,2010年7月15日
工程碩士,教育碩士
數學教師(微積分和預微積分)
麻省洛厄爾高中

第二版進行了一些格式調整,並增加了兩個附錄:
N:九進制(電子實現的候選方案);以及
V:可視化算盤算術。

除了Kindle電子書外,第二版現在還有一本印刷書可供購買。

亞馬遜網站上還有兩張DVD,其中包含Stephenson視頻:
《古代計算機:第二部分-視頻使用手冊》:
1. 如何使用計算板算盤(1/2);
2. 羅馬人如何使用計算板算盤(2/2)。

- Steve Stephenson,2013年7月15日
數學教師(2013年6月30日退休)