Practical Machine Learning: A New Look at Anomaly Detection (Paperback)
暫譯: 實用機器學習:異常檢測的新視角 (平裝本)

Ted Dunning, Ellen Friedman

  • 出版商: O'Reilly
  • 出版日期: 2014-09-30
  • 售價: $1,110
  • 貴賓價: 9.5$1,055
  • 語言: 英文
  • 頁數: 66
  • 裝訂: Paperback
  • ISBN: 1491911603
  • ISBN-13: 9781491911600
  • 相關分類: Machine Learning
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

Finding Data Anomalies You Didn't Know to Look For

Anomaly detection is the detective work of machine learning: finding the unusual, catching the fraud, discovering strange activity in large and complex datasets. But, unlike Sherlock Holmes, you may not know what the puzzle is, much less what “suspects” you’re looking for. This O’Reilly report uses practical examples to explain how the underlying concepts of anomaly detection work.

From banking security to natural sciences, medicine, and marketing, anomaly detection has many useful applications in this age of big data. And the search for anomalies will intensify once the Internet of Things spawns even more new types of data. The concepts described in this report will help you tackle anomaly detection in your own project.

  • Use probabilistic models to predict what’s normal and contrast that to what you observe
  • Set an adaptive threshold to determine which data falls outside of the normal range, using the t-digest algorithm
  • Establish normal fluctuations in complex systems and signals (such as an EKG) with a more adaptive probablistic model
  • Use historical data to discover anomalies in sporadic event streams, such as web traffic
  • Learn how to use deviations in expected behavior to trigger fraud alerts

商品描述(中文翻譯)

**尋找您未曾注意到的數據異常**

異常檢測是機器學習中的偵探工作:發現不尋常的情況、捕捉詐騙行為、在大型且複雜的數據集中發現奇怪的活動。但是,與福爾摩斯不同的是,您可能不知道謎題是什麼,更不用說您正在尋找哪些“嫌疑犯”。這份 O'Reilly 報告使用實際範例來解釋異常檢測的基本概念是如何運作的。

從銀行安全到自然科學、醫學和行銷,異常檢測在這個大數據時代有許多有用的應用。隨著物聯網產生更多新類型的數據,對異常的搜尋將會加劇。這份報告中描述的概念將幫助您在自己的專案中處理異常檢測。

- 使用概率模型來預測什麼是正常的,並將其與您觀察到的情況進行對比
- 設定自適應閾值,以確定哪些數據超出正常範圍,使用 t-digest 演算法
- 使用更具自適應性的概率模型來建立複雜系統和信號(例如心電圖)的正常波動
- 利用歷史數據來發現偶發事件流中的異常,例如網頁流量
- 學習如何利用預期行為的偏差來觸發詐騙警報