Natural Language Processing with PyTorch
暫譯: 使用 PyTorch 的自然語言處理
Delip Rao, Brian McMahan
- 出版商: O'Reilly
- 出版日期: 2019-03-12
- 售價: $2,640
- 語言: 英文
- 頁數: 256
- 裝訂: Paperback
- ISBN: 1491978236
- ISBN-13: 9781491978238
-
相關分類:
DeepLearning
-
相關翻譯:
PyTorch 自然語言處理|以深度學習建立語言應用程式 (Natural Language Processing with PyTorch) (繁中版)
基於 PyTorch 的自然語言處理 (Natural Language Processing with PyTorch) (簡中版)
買這商品的人也買了...
-
$4,240$4,028 -
$1,780$1,744 -
$1,200$1,140 -
$1,730$1,644 -
$400$316 -
$2,470$2,347 -
$948Scala for the Impatient,2/e
-
$1,150$1,093 -
$1,800$1,710 -
$352FFmpeg 從入門到精通
-
$450$351 -
$1,750$1,715 -
$600$468 -
$2,240Practical Time Series Analysis: Prediction with Statistics and Machine Learning (Paperback)
-
$490$441 -
$1,850$1,758 -
$505C++ 黑客編程揭秘與防範, 3/e
-
$1,490$1,416 -
$1,570$1,492 -
$1,000$790 -
$1,990$1,891 -
$1,830$1,739 -
$1,758$1,665 -
$1,830$1,739 -
$3,730$3,544
相關主題
商品描述
Natural Language Processing (NLP) offers unbounded opportunities for solving interesting problems in artificial intelligence, making it the latest frontier for developing intelligent, deep learning-based applications. If you’re a developer or researcher ready to dive deeper into this rapidly growing area of artificial intelligence, this practical book shows you how to use the PyTorch deep learning framework to implement recently discovered NLP techniques. To get started, all you need is a machine learning background and experience programming with Python.
Authors Delip Rao and Goku Mohandas provide you with a solid grounding in PyTorch, and deep learning algorithms, for building applications involving semantic representation of text. Each chapter includes several code examples and illustrations.
- Get extensive introductions to NLP, deep learning, and PyTorch
- Understand traditional NLP methods, including NLTK, SpaCy, and gensim
- Explore embeddings: high quality representations for words in a language
- Learn representations from a language sequence, using the Recurrent Neural Network (RNN)
- Improve on RNN results with complex neural architectures, such as Long Short Term Memories (LSTM) and Gated Recurrent Units
- Explore sequence-to-sequence models (used in translation) that read one sequence and produce another
商品描述(中文翻譯)
自然語言處理(Natural Language Processing, NLP)為解決人工智慧中的有趣問題提供了無限的機會,使其成為開發基於深度學習的智能應用的最新前沿。如果您是一位準備深入探索這個快速增長的人工智慧領域的開發者或研究者,這本實用的書籍將向您展示如何使用 PyTorch 深度學習框架來實現最近發現的 NLP 技術。要開始,您只需要具備機器學習的背景和使用 Python 編程的經驗。
作者 Delip Rao 和 Goku Mohandas 為您提供了在 PyTorch 和深度學習算法方面的堅實基礎,以構建涉及文本語義表示的應用程序。每一章都包含幾個代碼示例和插圖。
- 獲得對 NLP、深度學習和 PyTorch 的廣泛介紹
- 理解傳統的 NLP 方法,包括 NLTK、SpaCy 和 gensim
- 探索嵌入(embeddings):語言中單詞的高質量表示
- 使用遞迴神經網絡(Recurrent Neural Network, RNN)學習語言序列的表示
- 通過複雜的神經架構(如長短期記憶(Long Short Term Memory, LSTM)和門控遞迴單元(Gated Recurrent Units))改善 RNN 的結果
- 探索序列到序列模型(sequence-to-sequence models,應用於翻譯),該模型讀取一個序列並生成另一個序列