Ontology Engineering
暫譯: 本體工程

Kendall, Elisa F., McGuinness, Deborah L., Ding, Ying

  • 出版商: Morgan & Claypool
  • 出版日期: 2019-04-26
  • 售價: $2,580
  • 貴賓價: 9.5$2,451
  • 語言: 英文
  • 頁數: 122
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1681733102
  • ISBN-13: 9781681733104
  • 海外代購書籍(需單獨結帳)

商品描述

Ontologies have become increasingly important as the use of knowledge graphs, machine learning, natural language processing (NLP), and the amount of data generated on a daily basis has exploded.

As of 2014, 90% of the data in the digital universe was generated in the two years prior, and the volume of data was projected to grow from 3.2 zettabytes to 40 zettabytes in the next six years. The very real issues that government, research, and commercial organizations are facing in order to sift through this amount of information to support decision-making alone mandate increasing automation. Yet, the data profiling, NLP, and learning algorithms that are ground-zero for data integration, manipulation, and search provide less than satisfactory results unless they utilize terms with unambiguous semantics, such as those found in ontologies and well-formed rule sets. Ontologies can provide a rich "schema" for the knowledge graphs underlying these technologies as well as the terminological and semantic basis for dramatic improvements in results. Many ontology projects fail, however, due at least in part to a lack of discipline in the development process. This book, motivated by the Ontology 101 tutorial given for many years at what was originally the Semantic Technology Conference (SemTech) and then later from a semester-long university class, is designed to provide the foundations for ontology engineering. The book can serve as a course textbook or a primer for all those interested in ontologies.

商品描述(中文翻譯)

本體論在知識圖譜、機器學習、自然語言處理 (NLP) 的使用以及每日生成的數據量激增的背景下,變得越來越重要。

截至2014年,數位宇宙中90%的數據是在前兩年生成的,並且預計在接下來的六年內,數據量將從3.2澤字節增長到40澤字節。政府、研究和商業組織面臨的實際問題是,如何在這麼大量的信息中篩選出有助於決策的信息,這迫使他們必須增加自動化。然而,數據剖析、NLP和學習算法作為數據整合、操作和搜索的基礎,除非使用具有明確語義的術語,例如本體論和良好形成的規則集中的術語,否則提供的結果往往不盡人意。本體論可以為這些技術背後的知識圖譜提供豐富的「架構」,以及顯著改善結果的術語和語義基礎。然而,許多本體論項目失敗,部分原因在於開發過程中缺乏紀律。本書受到多年來在最初的語義技術會議 (SemTech) 上提供的本體論101教程以及後來的學期制大學課程的啟發,旨在提供本體工程的基礎。本書可以作為課程教科書或所有對本體論感興趣的人的入門書。

作者簡介

Elisa F. Kendall is a Partner in Thematix Partners LLC and graduate-level lecturer in computer science, focused on data management, data governance, knowledge representation, and decisioning systems. Her consulting practice includes business and information architecture, knowledge representation strategies, and ontology design, development, and training for clients in financial services, government, manufacturing, media, pharmaceutical, and retail domains. Recent projects have focused on use of ontologies to drive natural language processing, machine learning, interoperability, and other knowledge graph-based applications. Elisa represents knowledge representation, ontology, information architecture, and data management concerns on the Object Management Group (OMG)'s Architecture Board, is co-editor of the Ontology Definition Metamodel (ODM), and a contributor to a number of other ISO, W3C, and OMG standards, including the Financial Industry Business Ontology (FIBO) effort. Prior to joining Thematix, she was the founder and CEO of Sandpiper Software, an early entrant in the Semantic Web domain. Earlier in her career, she was software development manager for Aspect Development, and before that a ground systems data processing engineer for Lockheed Martin. She holds a B.S. in Mathematics and Computer Science from UCLA, and an A.M in Linguistics from Stanford University.

作者簡介(中文翻譯)

Elisa F. Kendall 是 Thematix Partners LLC 的合夥人,並擔任研究生層級的計算機科學講師,專注於數據管理、數據治理、知識表示和決策系統。她的顧問業務包括商業和信息架構、知識表示策略,以及為金融服務、政府、製造、媒體、製藥和零售領域的客戶提供本體設計、開發和培訓。最近的項目專注於利用本體推動自然語言處理、機器學習、互操作性及其他基於知識圖譜的應用。Elisa 代表知識表示、本體、信息架構和數據管理的相關事宜,參與物件管理組織(OMG)的架構委員會,並擔任本體定義元模型(ODM)的共同編輯,還參與了多項其他 ISO、W3C 和 OMG 標準的制定,包括金融行業商業本體(FIBO)計劃。在加入 Thematix 之前,她是 Sandpiper Software 的創始人兼首席執行官,該公司是語義網領域的早期參與者。在她的職業生涯早期,她曾擔任 Aspect Development 的軟體開發經理,並在此之前擔任洛克希德·馬丁(Lockheed Martin)的地面系統數據處理工程師。她擁有加州大學洛杉磯分校(UCLA)的數學和計算機科學學士學位,以及斯坦福大學的語言學碩士學位。