Argumentation Mining (Synthesis Lectures on Human Language Technologies)
暫譯: 論證挖掘(人類語言技術綜合講座)

Manfred Stede, Jodi Schneider

  • 出版商: Morgan & Claypool
  • 出版日期: 2018-12-20
  • 售價: $2,710
  • 貴賓價: 9.5$2,575
  • 語言: 英文
  • 頁數: 175
  • 裝訂: Paperback
  • ISBN: 1681734591
  • ISBN-13: 9781681734590
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Argumentation mining is an application of natural language processing (NLP) that emerged a few years ago and has recently enjoyed considerable popularity, as demonstrated by a series of international workshops and by a rising number of publications at the major conferences and journals of the field. Its goals are to identify argumentation in text or dialogue; to construct representations of the constellation of claims, supporting and attacking moves (in different levels of detail); and to characterize the patterns of reasoning that appear to license the argumentation. Furthermore, recent work also addresses the difficult tasks of evaluating the persuasiveness and quality of arguments. Some of the linguistic genres that are being studied include legal text, student essays, political discourse and debate, newspaper editorials, scientific writing, and others.

The book starts with a discussion of the linguistic perspective, characteristics of argumentative language, and their relationship to certain other notions such as subjectivity.

Besides the connection to linguistics, argumentation has for a long time been a topic in Artificial Intelligence, where the focus is on devising adequate representations and reasoning formalisms that capture the properties of argumentative exchange. It is generally very difficult to connect the two realms of reasoning and text analysis, but we are convinced that it should be attempted in the long term, and therefore we also touch upon some fundamentals of reasoning approaches.

Then the book turns to its focus, the computational side of mining argumentation in text. We first introduce a number of annotated corpora that have been used in the research. From the NLP perspective, argumentation mining shares subtasks with research fields such as subjectivity and sentiment analysis, semantic relation extraction, and discourse parsing. Therefore, many technical approaches are being borrowed from those (and other) fields. We break argumentation mining into a series of subtasks, starting with the preparatory steps of classifying text as argumentative (or not) and segmenting it into elementary units. Then, central steps are the automatic identification of claims, and finding statements that support or oppose the claim. For certain applications, it is also of interest to compute a full structure of an argumentative constellation of statements.

Next, we discuss a few steps that try to 'dig deeper': to infer the underlying reasoning pattern for a textual argument, to reconstruct unstated premises (so-called 'enthymemes'), and to evaluate the quality of the argumentation. We also take a brief look at 'the other side' of mining, i.e., the generation or synthesis of argumentative text.

The book finishes with a summary of the argumentation mining tasks, a sketch of potential applications, and a--necessarily subjective--outlook for the field.

商品描述(中文翻譯)

論證挖掘(Argumentation mining)是自然語言處理(Natural Language Processing, NLP)的一個應用,幾年前出現,最近受到相當大的關注,這可以從一系列國際研討會以及在該領域主要會議和期刊上不斷增加的出版物中看出。其目標是識別文本或對話中的論證;構建主張、支持和反對行動的星座表示(以不同的細節層次);並描述出現的推理模式,這些模式似乎為論證提供了依據。此外,最近的研究也針對評估論證的說服力和質量這一困難任務進行了探討。一些正在研究的語言類型包括法律文本、學生論文、政治話語和辯論、報紙社論、科學寫作等。

本書首先討論語言學的視角、論證語言的特徵及其與某些其他概念(如主觀性)的關係。

除了與語言學的聯繫外,論證長期以來一直是人工智慧(Artificial Intelligence)中的一個主題,重點在於設計適當的表示和推理形式,以捕捉論證交流的特性。將推理和文本分析這兩個領域連接起來通常是非常困難的,但我們相信這應該在長期內進行嘗試,因此我們也觸及了一些推理方法的基本原則。

接著,本書轉向其重點,即文本中論證挖掘的計算側面。我們首先介紹一些在研究中使用的註釋語料庫。從NLP的角度來看,論證挖掘與主觀性和情感分析、語義關係提取和話語解析等研究領域共享子任務。因此,許多技術方法是從這些(及其他)領域借用的。我們將論證挖掘分解為一系列子任務,首先是將文本分類為論證性(或非論證性)並將其分段為基本單元的準備步驟。然後,核心步驟是自動識別主張,並找到支持或反對該主張的陳述。對於某些應用,計算論證陳述的完整結構也是一個有趣的問題。

接下來,我們討論幾個試圖「深入挖掘」的步驟:推斷文本論證的潛在推理模式,重建未明言的前提(所謂的「隱含前提」),以及評估論證的質量。我們還簡要回顧了挖掘的「另一面」,即生成或合成論證文本。

本書以論證挖掘任務的總結、潛在應用的概述以及對該領域的—必然主觀的—展望作結。