Scaling Big Data with Hadoop and Solr (Paperback)
暫譯: 使用 Hadoop 和 Solr 擴展大數據
Hrishikesh Karambelkar
- 出版商: Packt Publishing
- 出版日期: 2013-08-10
- 售價: $1,880
- 貴賓價: 9.5 折 $1,786
- 語言: 英文
- 頁數: 144
- 裝訂: Paperback
- ISBN: 1783281375
- ISBN-13: 9781783281374
-
相關分類:
Hadoop、全文搜尋引擎 Full-text-search、大數據 Big-data
已過版
買這商品的人也買了...
-
$1,890$1,796 -
$520$411 -
$580$458 -
$550$468 -
$780$616 -
$940$700 -
$780$764 -
$900$810 -
$580$452 -
$560$437 -
$780$616 -
$590$502 -
$490$387 -
$880$695 -
$380$323 -
$550$435 -
$480$379 -
$780$616 -
$360$284 -
$820$648 -
$560$476 -
$650$514 -
$620$484 -
$540$427 -
$590$502
相關主題
商品描述
By combining Apache Hadoop and Solr you can build super-efficient, high-speed enterprise search engines, and this book takes you through every stage of the process with a practical tutorial. Written specifically for Java programmers.
Overview
- Understand the different approaches of making Solr work on Big Data as well as the benefits and drawbacks
- Learn from interesting, real-life use cases for Big Data search along with sample code
- Work with the Distributed Enterprise Search without prior knowledge of Hadoop and Solr
In Detail
As data grows exponentially day-by-day, extracting information becomes a tedious activity in itself. Technologies like Hadoop are trying to address some of the concerns, while Solr provides high-speed faceted search. Bringing these two technologies together is helping organizations resolve the problem of information extraction from Big Data by providing excellent distributed faceted search capabilities.
Scaling Big Data with Hadoop and Solr is a step-by-step guide that helps you build high performance enterprise search engines while scaling data. Starting with the basics of Apache Hadoop and Solr, this book then dives into advanced topics of optimizing search with some interesting real-world use cases and sample Java code.
Scaling Big Data with Hadoop and Solr starts by teaching you the basics of Big Data technologies including Hadoop and its ecosystem and Apache Solr. It explains the different approaches of scaling Big Data with Hadoop and Solr, with discussion regarding the applicability, benefits, and drawbacks of each approach. It then walks readers through how sharding and indexing can be performed on Big Data followed by the performance optimization of Big Data search. Finally, it covers some real-world use cases for Big Data scaling.
With this book, you will learn everything you need to know to build a distributed enterprise search platform as well as how to optimize this search to a greater extent resulting in maximum utilization of available resources.
What you will learn from this book
- Understand Apache Hadoop, its ecosystem, and Apache Solr
- Learn different industry-based architectures while designing Big Data enterprise search and understand their applicability and benefits
- Write map/reduce tasks for indexing your data
- Fine-tune the performance of your Big Data search while scaling your data
- Increase your awareness of new technologies available today in the market that provide you with Hadoop and Solr
- Use Solr as a NOSQL database
- Configure your Big Data instance to perform in the real world
- Address the key features of a distributed Big Data system such as ensuring high availability and reliability of your instances
- Integrate Hadoop and Solr together in your industry by means of use cases
Approach
This book is a step-by-step tutorial that will enable you to leverage the flexible search functionality of Apache Solr together with the Big Data power of Apache Hadoop.
Who this book is written for
Scaling Big Data with Hadoop and Solr provides guidance to developers who wish to build high-speed enterprise search platforms using Hadoop and Solr. This book is primarily aimed at Java programmers who wish to extend the Hadoop platform to make it run as an enterprise search without any prior knowledge of Apache Hadoop and Solr.
商品描述(中文翻譯)
透過結合 Apache Hadoop 和 Solr,您可以建立超高效能、高速的企業搜尋引擎,而本書將帶您逐步了解整個過程,並提供實用的教學。專為 Java 程式設計師撰寫。
概述
- 了解使 Solr 在大數據上運作的不同方法,以及其優缺點
- 從有趣的實際案例中學習大數據搜尋,並附有範例程式碼
- 在沒有 Hadoop 和 Solr 先前知識的情況下,使用分散式企業搜尋
詳細內容
隨著數據每天以指數增長,提取資訊本身成為一項繁瑣的活動。像 Hadoop 這樣的技術試圖解決一些問題,而 Solr 則提供高速的分面搜尋。將這兩種技術結合起來,幫助組織解決從大數據中提取資訊的問題,提供卓越的分散式分面搜尋能力。
《Scaling Big Data with Hadoop and Solr》是一本逐步指南,幫助您在擴展數據的同時建立高效能的企業搜尋引擎。本書從 Apache Hadoop 和 Solr 的基礎開始,然後深入探討優化搜尋的進階主題,並提供一些有趣的實際案例和範例 Java 程式碼。
《Scaling Big Data with Hadoop and Solr》首先教您大數據技術的基礎,包括 Hadoop 及其生態系統和 Apache Solr。它解釋了使用 Hadoop 和 Solr 擴展大數據的不同方法,並討論每種方法的適用性、優點和缺點。接著,書中將引導讀者了解如何在大數據上進行分片和索引,然後進行大數據搜尋的性能優化。最後,涵蓋一些大數據擴展的實際案例。
透過本書,您將學到建立分散式企業搜尋平台所需的所有知識,以及如何進一步優化此搜尋,以達到最大化利用可用資源的效果。
您將從本書學到的內容
- 了解 Apache Hadoop、其生態系統和 Apache Solr
- 在設計大數據企業搜尋時學習不同的行業架構,並了解其適用性和優點
- 撰寫 map/reduce 任務以索引您的數據
- 在擴展數據的同時,微調您的大數據搜尋性能
- 增加對當前市場上提供 Hadoop 和 Solr 的新技術的認識
- 將 Solr 作為 NOSQL 數據庫使用
- 配置您的大數據實例以在現實世界中運行
- 解決分散式大數據系統的關鍵特性,例如確保實例的高可用性和可靠性
- 通過使用案例將 Hadoop 和 Solr 整合到您的行業中
方法
本書是一個逐步的教學,將使您能夠利用 Apache Solr 的靈活搜尋功能,結合 Apache Hadoop 的大數據能力。
本書的讀者對象
《Scaling Big Data with Hadoop and Solr》為希望使用 Hadoop 和 Solr 建立高速企業搜尋平台的開發人員提供指導。本書主要針對希望擴展 Hadoop 平台以使其運行為企業搜尋的 Java 程式設計師,並且不需要具備 Apache Hadoop 和 Solr 的先前知識。