Haskell Data Analysis Cookbook
暫譯: Haskell 數據分析食譜
Nishant Shukla
- 出版商: Packt Publishing
- 出版日期: 2014-06-30
- 售價: $2,400
- 貴賓價: 9.5 折 $2,280
- 語言: 英文
- 頁數: 288
- 裝訂: Paperback
- ISBN: 1783286334
- ISBN-13: 9781783286331
-
相關分類:
Functional-programming、Data Science
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$340$289 -
$399$339 -
$450$383 -
$1,619Parallel and Concurrent Programming in Haskell: Techniques for Multicore and Multithreaded Programming (Paperback)
-
$403自製編程語言
-
$403獨闢蹊徑的編程思維-拿來主義編程
-
$1,214Functional Thinking: Paradigm Over Syntax (Paperback)
-
$1,570$1,492 -
$450$356 -
$180計算機是怎樣跑起來的 (How Computer Works)
-
$490$323 -
$1,450$1,378 -
$1,892Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems (Paperback)
-
$680$578
相關主題
商品描述
Explore intuitive data analysis techniques and powerful machine learning methods using over 130 practical recipes
Overview
- A practical and concise guide to using Haskell when getting to grips with data analysis
- Recipes for every stage of data analysis, from collection to visualization
- In-depth examples demonstrating various tools, solutions and techniques
In Detail
This book will take you on a voyage through all the steps involved in data analysis. It provides synergy between Haskell and data modeling, consisting of carefully chosen examples featuring some of the most popular machine learning techniques.
You will begin with how to obtain and clean data from various sources. You will then learn how to use various data structures such as trees and graphs. The meat of data analysis occurs in the topics involving statistical techniques, parallelism, concurrency, and machine learning algorithms, along with various examples of visualizing and exporting results. By the end of the book, you will be empowered with techniques to maximize your potential when using Haskell for data analysis.
What you will learn from this book
- Obtain and analyze raw data from various sources including text files, CSV files, databases, and websites
- Implement practical tree and graph algorithms on various datasets
- Apply statistical methods such as moving average and linear regression to understand patterns
- Fiddle with parallel and concurrent code to speed up and simplify time-consuming algorithms
- Find clusters in data using some of the most popular machine learning algorithms
- Manage results by visualizing or exporting data
Approach
Step-by-step recipes filled with practical code samples and engaging examples demonstrate Haskell in practice, and then the concepts behind the code.
Who this book is written for
This book shows functional developers and analysts how to leverage their existing knowledge of Haskell specifically for high-quality data analysis. A good understanding of data sets and functional programming is assumed.
商品描述(中文翻譯)
探索直觀的數據分析技術和強大的機器學習方法,使用超過 130 個實用的配方
概述
- 一本實用且簡明的指南,幫助您在數據分析中掌握 Haskell
- 涵蓋數據分析每個階段的配方,從數據收集到可視化
- 深入的範例展示各種工具、解決方案和技術
詳細內容
本書將帶您經歷數據分析的所有步驟。它提供了 Haskell 與數據建模之間的協同作用,包含精心挑選的範例,展示一些最受歡迎的機器學習技術。
您將首先學習如何從各種來源獲取和清理數據。接著,您將學習如何使用各種數據結構,如樹和圖。數據分析的核心在於統計技術、並行性、併發性和機器學習算法的主題,以及可視化和導出結果的各種範例。到本書結束時,您將掌握使用 Haskell 進行數據分析的技術,最大化您的潛力。
您將從本書學到的內容
- 從各種來源獲取和分析原始數據,包括文本文件、CSV 文件、數據庫和網站
- 在各種數據集上實現實用的樹和圖算法
- 應用統計方法,如移動平均和線性回歸,以理解模式
- 操作並行和併發代碼,以加速和簡化耗時的算法
- 使用一些最受歡迎的機器學習算法在數據中尋找聚類
- 通過可視化或導出數據來管理結果
方法
逐步的配方充滿實用的代碼範例和引人入勝的例子,展示 Haskell 的實踐,然後解釋代碼背後的概念。
本書的讀者對象
本書向功能開發人員和分析師展示如何利用他們對 Haskell 的現有知識,專門用於高質量的數據分析。假設讀者對數據集和函數式編程有良好的理解。