Generative Adversarial Networks Cookbook: Over 100 recipes to build generative models using Python, TensorFlow, and Keras
暫譯: 生成對抗網絡食譜:超過100個使用Python、TensorFlow和Keras構建生成模型的食譜
Josh Kalin
- 出版商: Packt Publishing
- 出版日期: 2018-12-31
- 定價: $1,800
- 售價: 9.5 折 $1,710
- 語言: 英文
- 頁數: 268
- 裝訂: Paperback
- ISBN: 1789139902
- ISBN-13: 9781789139907
-
相關分類:
DeepLearning、Python、程式語言、TensorFlow
-
相關翻譯:
實戰GAN:TensorFlow與Keras生成對抗網絡構建 (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
-
$474$450 -
$403預測分析建模 : Python 與 R語言實現
-
$422R語言市場研究分析
-
$352基於 ArcGIS 的 Python 編程秘笈, 2/e (Programming ArcGIS with Python Cookbook, 2/e)
-
$1,596Hands-On Generative Adversarial Networks with Keras
-
$556Adobe XD CC 2019 經典教程 (彩色版)
-
$550$429 -
$454Arcgis 地理信息系統:從基礎到實踐
-
$365實用黑客攻防技術
-
$880$695
相關主題
商品描述
Simplify next-generation deep learning by implementing powerful generative models using Python, TensorFlow and Keras
Key Features
- Understand the common architecture of different types of GANs
- Train, optimize, and deploy GAN applications using TensorFlow and Keras
- Build generative models with real-world data sets, including 2D and 3D data
Book Description
Developing Generative Adversarial Networks (GANs) is a complex task, and it is often hard to find code that is easy to understand.
This book leads you through eight different examples of modern GAN implementations, including CycleGAN, simGAN, DCGAN, and 2D image to 3D model generation. Each chapter contains useful recipes to build on a common architecture in Python, TensorFlow and Keras to explore increasingly difficult GAN architectures in an easy-to-read format. The book starts by covering the different types of GAN architecture to help you understand how the model works. This book also contains intuitive recipes to help you work with use cases involving DCGAN, Pix2Pix, and so on. To understand these complex applications, you will take different real-world data sets and put them to use.
By the end of this book, you will be equipped to deal with the challenges and issues that you may face while working with GAN models, thanks to easy-to-follow code solutions that you can implement right away.
What you will learn
- Structure a GAN architecture in pseudocode
- Understand the common architecture for each of the GAN models you will build
- Implement different GAN architectures in TensorFlow and Keras
- Use different datasets to enable neural network functionality in GAN models
- Combine different GAN models and learn how to fine-tune them
- Produce a model that can take 2D images and produce 3D models
- Develop a GAN to do style transfer with Pix2Pix
Who this book is for
This book is for data scientists, machine learning developers, and deep learning practitioners looking for a quick reference to tackle challenges and tasks in the GAN domain. Familiarity with machine learning concepts and working knowledge of Python programming language will help you get the most out of the book.
Table of Contents
- What is a Generative Adversarial Network?
- Data First - How to prepare your dataset
- My First GAN in under 100 lines
- Dreaming new Kitchens using DCGAN
- Pix2Pix Image-to-Image Translation
- Style Transfering Your image using CycleGAN
- Use Simulated Images to Create Photo Realistic Eyeballs using simGAN
- From Image to 3D Models using GANs
商品描述(中文翻譯)
透過使用 Python、TensorFlow 和 Keras 實現強大的生成模型,簡化下一代深度學習
主要特點
- 了解不同類型 GAN 的共同架構
- 使用 TensorFlow 和 Keras 訓練、優化和部署 GAN 應用
- 使用真實世界數據集構建生成模型,包括 2D 和 3D 數據
書籍描述
開發生成對抗網絡 (GAN) 是一項複雜的任務,通常很難找到易於理解的代碼。
本書帶您通過八個不同的現代 GAN 實現示例,包括 CycleGAN、simGAN、DCGAN 和 2D 圖像到 3D 模型生成。每一章都包含有用的配方,以便在 Python、TensorFlow 和 Keras 中構建基於共同架構的內容,並以易於閱讀的格式探索越來越困難的 GAN 架構。本書首先介紹不同類型的 GAN 架構,以幫助您理解模型的運作方式。本書還包含直觀的配方,幫助您處理涉及 DCGAN、Pix2Pix 等的用例。為了理解這些複雜的應用,您將使用不同的真實世界數據集並加以應用。
在本書結束時,您將具備應對在使用 GAN 模型時可能面臨的挑戰和問題的能力,因為本書提供了易於遵循的代碼解決方案,您可以立即實施。
您將學到什麼
- 用偽代碼構建 GAN 架構
- 了解您將構建的每個 GAN 模型的共同架構
- 在 TensorFlow 和 Keras 中實現不同的 GAN 架構
- 使用不同的數據集來啟用 GAN 模型中的神經網絡功能
- 結合不同的 GAN 模型並學習如何微調它們
- 生成一個可以將 2D 圖像轉換為 3D 模型的模型
- 開發一個使用 Pix2Pix 進行風格轉換的 GAN
本書適合誰
本書適合數據科學家、機器學習開發人員和深度學習從業者,尋求快速參考以應對 GAN 領域的挑戰和任務。熟悉機器學習概念和具備 Python 程式語言的工作知識將幫助您充分利用本書。
目錄
- 什麼是生成對抗網絡?
- 數據優先 - 如何準備您的數據集
- 在 100 行以內實現我的第一個 GAN
- 使用 DCGAN 夢想新廚房
- Pix2Pix 圖像到圖像的轉換
- 使用 CycleGAN 進行圖像風格轉換
- 使用 simGAN 利用模擬圖像創建照片真實的眼球
- 從圖像到 3D 模型使用 GAN