Hands-On Generative Adversarial Networks with PyTorch 1.x
暫譯: 實戰生成對抗網絡與 PyTorch 1.x

Hany, John (Author), Walters, Greg (Autho

  • 出版商: Packt Publishing
  • 出版日期: 2019-12-12
  • 售價: $1,680
  • 貴賓價: 9.5$1,596
  • 語言: 英文
  • 頁數: 312
  • ISBN: 1789530512
  • ISBN-13: 9781789530513
  • 相關分類: DeepLearning
  • 立即出貨 (庫存=1)

買這商品的人也買了...

相關主題

商品描述

 
Learn
  • Implement PyTorch's latest features to ensure efficient model designing
  • Get to grips with the working mechanisms of GAN models
  • Perform style transfer between unpaired image collections with CycleGAN
  • Build and train 3D-GANs to generate a point cloud of 3D objects
  • Create a range of GAN models to perform various image synthesis operations
  • Use SEGAN to suppress noise and improve the quality of speech audio
About

With continuously evolving research and development, Generative Adversarial Networks (GANs) are the next big thing in the field of deep learning. This book highlights the key improvements in GANs over generative models and guides in making the best out of GANs with the help of hands-on examples.

This book starts by taking you through the core concepts necessary to understand how each component of a GAN model works. You'll build your first GAN model to understand how generator and discriminator networks function. As you advance, you'll delve into a range of examples and datasets to build a variety of GAN networks using PyTorch functionalities and services, and become well-versed with architectures, training strategies, and evaluation methods for image generation, translation, and restoration. You'll even learn how to apply GAN models to solve problems in areas such as computer vision, multimedia, 3D models, and natural language processing (NLP). The book covers how to overcome the challenges faced while building generative models from scratch. Finally, you'll also discover how to train your GAN models to generate adversarial examples to attack other CNN and GAN models.

By the end of this book, you will have learned how to build, train, and optimize next-generation GAN models and use them to solve a variety of real-world problems.

Features
  • Implement GAN architectures to generate images, text, audio, 3D models, and more
  • Understand how GANs work and become an active contributor in the open source community
  • Learn how to generate photo-realistic images based on text descriptions

商品描述(中文翻譯)

 


學習內容


  • 實作 PyTorch 的最新功能以確保高效的模型設計

  • 掌握 GAN 模型的運作機制

  • 使用 CycleGAN 在未配對的圖像集合之間進行風格轉換

  • 建立並訓練 3D-GAN 以生成 3D 物件的點雲

  • 創建多種 GAN 模型以執行各種圖像合成操作

  • 使用 SEGAN 來抑制噪音並改善語音音頻的質量





關於本書

隨著研究和開發的不斷演進,生成對抗網絡 (GANs) 是深度學習領域的下一個重大突破。本書突顯了 GAN 相較於生成模型的關鍵改進,並通過實作範例指導讀者充分利用 GAN。

本書首先帶您了解理解 GAN 模型各組件運作所需的核心概念。您將建立您的第一個 GAN 模型,以了解生成器和判別器網絡的功能。隨著進步,您將深入探索一系列範例和數據集,使用 PyTorch 的功能和服務構建各種 GAN 網絡,並熟悉圖像生成、轉換和修復的架構、訓練策略和評估方法。您甚至會學習如何將 GAN 模型應用於解決計算機視覺、多媒體、3D 模型和自然語言處理 (NLP) 等領域的問題。本書涵蓋了從零開始構建生成模型時所面臨的挑戰及其解決方案。最後,您還將發現如何訓練您的 GAN 模型以生成對抗樣本,攻擊其他 CNN 和 GAN 模型。

在本書結束時,您將學會如何構建、訓練和優化下一代 GAN 模型,並使用它們解決各種現實世界的問題。





特色


  • 實作 GAN 架構以生成圖像、文本、音頻、3D 模型等

  • 了解 GAN 的運作原理,並成為開源社群的積極貢獻者

  • 學習如何根據文本描述生成照片真實感的圖像