Hands-On Generative Adversarial Networks with Keras
暫譯: 使用 Keras 的實作生成對抗網路

Valle, Rafael

  • 出版商: Packt Publishing
  • 出版日期: 2019-05-03
  • 售價: $1,680
  • 貴賓價: 9.5$1,596
  • 語言: 英文
  • 頁數: 272
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1789538203
  • ISBN-13: 9781789538205
  • 相關分類: DeepLearning
  • 立即出貨 (庫存=1)

買這商品的人也買了...

相關主題

商品描述

Generative Adversarial Networks (GANs) have revolutionized the fields of machine learning and deep learning. This book will be your first step towards understanding GAN architectures and tackling the challenges involved in training them.

This book opens with an introduction to deep learning and generative models, and their applications in artificial intelligence (AI). You will then learn how to build, evaluate, and improve your first GAN with the help of easy-to-follow examples. The next few chapters will guide you through training a GAN model to produce and improve high-resolution images. You will also learn how to implement conditional GANs that give you the ability to control characteristics of GAN outputs. You will build on your knowledge further by exploring a new training methodology for progressive growing of GANs. Moving on, you'll gain insights into state-of-the-art models in image synthesis, speech enhancement, and natural language generation using GANs. In addition to this, you'll be able to identify GAN samples with TequilaGAN.

By the end of this book, you will be well-versed with the latest advancements in the GAN framework using various examples and datasets, and you will have the skills you need to implement GAN architectures for several tasks and domains, including computer vision, natural language processing (NLP), and audio processing.

Foreword by Ting-Chun Wang, Senior Research Scientist, NVIDIA

商品描述(中文翻譯)

生成對抗網路(Generative Adversarial Networks, GANs)已經徹底改變了機器學習和深度學習的領域。本書將是您理解GAN架構及其訓練過程中所面臨挑戰的第一步。

本書首先介紹深度學習和生成模型,以及它們在人工智慧(AI)中的應用。接著,您將學習如何構建、評估和改進您的第一個GAN,並通過易於跟隨的範例來實現。接下來的幾章將指導您訓練一個GAN模型,以生成和改進高解析度圖像。您還將學習如何實現條件GAN(conditional GAN),使您能夠控制GAN輸出的特徵。您將進一步擴展知識,探索GAN的漸進式增長(progressive growing)新訓練方法。隨著進展,您將深入了解使用GAN在圖像合成、語音增強和自然語言生成方面的最先進模型。此外,您還將能夠使用TequilaGAN識別GAN樣本。

在本書結束時,您將熟悉GAN框架的最新進展,並通過各種範例和數據集獲得所需的技能,以實現多個任務和領域的GAN架構,包括計算機視覺、自然語言處理(NLP)和音頻處理。

前言由NVIDIA資深研究科學家王廷俊撰寫。