Machine Learning Fundamentals: Use Python and scikit-learn to get up and running with the hottest developments in machine learning
暫譯: 機器學習基礎:使用 Python 和 scikit-learn 快速掌握機器學習的最新發展

Hyatt Saleh

  • 出版商: Packt Publishing
  • 出版日期: 2018-11-29
  • 售價: $1,660
  • 貴賓價: 9.5$1,577
  • 語言: 英文
  • 頁數: 240
  • 裝訂: Paperback
  • ISBN: 1789803551
  • ISBN-13: 9781789803556
  • 相關分類: Python程式語言Machine Learning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

With the flexibility and features of scikit-learn and Python, build machine learning algorithms that optimize the programming process and take application performance to a whole new level

Key Features

  • Explore scikit-learn uniform API and its application into any type of model
  • Understand the difference between supervised and unsupervised models
  • Learn the usage of machine learning through real-world examples

Book Description

As machine learning algorithms become popular, new tools that optimize these algorithms are also developed. Machine Learning Fundamentals explains you how to use the syntax of scikit-learn. You'll study the difference between supervised and unsupervised models, as well as the importance of choosing the appropriate algorithm for each dataset. You'll apply unsupervised clustering algorithms over real-world datasets, to discover patterns and profiles, and explore the process to solve an unsupervised machine learning problem.

The focus of the book then shifts to supervised learning algorithms. You'll learn to implement different supervised algorithms and develop neural network structures using the scikit-learn package. You'll also learn how to perform coherent result analysis to improve the performance of the algorithm by tuning hyperparameters.

By the end of this book, you will have gain all the skills required to start programming machine learning algorithms.

What you will learn

  • Understand the importance of data representation
  • Gain insights into the differences between supervised and unsupervised models
  • Explore data using the Matplotlib library
  • Study popular algorithms, such as k-means, Mean-Shift, and DBSCAN
  • Measure model performance through different metrics
  • Implement a confusion matrix using scikit-learn
  • Study popular algorithms, such as Naive-Bayes, Decision Tree, and SVM
  • Perform error analysis to improve the performance of the model
  • Learn to build a comprehensive machine learning program

Who this book is for

Machine Learning Fundamentals is designed for developers who are new to the field of machine learning and want to learn how to use the scikit-learn library to develop machine learning algorithms. You must have some knowledge and experience in Python programming, but you do not need any prior knowledge of scikit-learn or machine learning algorithms.

Table of Contents

  1. Introduction to sciki-learn
  2. Unsupervised Learning: Real-life Applications
  3. Supervised Learning: Key Steps
  4. Supervised Learning Algorithms: Predict Annual Income
  5. Artificial Neural Networks: Predict of Annual Income
  6. Building Your Own Program

商品描述(中文翻譯)

利用 scikit-learn 和 Python 的靈活性與功能,構建優化程式設計過程的機器學習演算法,並將應用程式性能提升到全新水平

主要特點



  • 探索 scikit-learn 的統一 API 及其在各類模型中的應用

  • 了解監督式模型與非監督式模型之間的差異

  • 通過實際案例學習機器學習的使用

書籍描述


隨著機器學習演算法的普及,優化這些演算法的新工具也相繼開發。《機器學習基礎》將教你如何使用 scikit-learn 的語法。你將學習監督式模型與非監督式模型之間的差異,以及為每個數據集選擇適當演算法的重要性。你將在實際數據集上應用非監督式聚類演算法,以發現模式和特徵,並探索解決非監督式機器學習問題的過程。


本書的重點隨後轉向監督式學習演算法。你將學習如何實現不同的監督式演算法,並使用 scikit-learn 套件開發神經網絡結構。你還將學習如何進行一致的結果分析,通過調整超參數來提高演算法的性能。


在本書結束時,你將掌握開始編程機器學習演算法所需的所有技能。

你將學到什麼



  • 理解數據表示的重要性

  • 深入了解監督式模型與非監督式模型之間的差異

  • 使用 Matplotlib 庫探索數據

  • 學習流行的演算法,如 k-means、Mean-Shift 和 DBSCAN

  • 通過不同的指標測量模型性能

  • 使用 scikit-learn 實現混淆矩陣

  • 學習流行的演算法,如 Naive-Bayes、決策樹和 SVM

  • 進行錯誤分析以提高模型性能

  • 學習構建全面的機器學習程序

本書適合誰


《機器學習基礎》是為新進入機器學習領域的開發者設計的,旨在教導他們如何使用 scikit-learn 庫來開發機器學習演算法。你需要具備一定的 Python 編程知識和經驗,但不需要具備任何 scikit-learn 或機器學習演算法的先前知識。

目錄



  1. scikit-learn 簡介

  2. 非監督式學習:實際應用

  3. 監督式學習:關鍵步驟

  4. 監督式學習演算法:預測年收入

  5. 人工神經網絡:預測年收入

  6. 構建自己的程序