Serverless Machine Learning with Amazon Redshift ML: Create, train, and deploy machine learning models using familiar SQL commands
暫譯: 無伺服器機器學習與 Amazon Redshift ML:使用熟悉的 SQL 命令創建、訓練和部署機器學習模型
Panda, Debu, Bates, Phil, Pittampally, Bhanu
- 出版商: Packt Publishing
- 出版日期: 2023-08-30
- 售價: $2,030
- 貴賓價: 9.5 折 $1,929
- 語言: 英文
- 頁數: 290
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1804619280
- ISBN-13: 9781804619285
-
相關分類:
Serverless、SQL、Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Supercharge and deploy Amazon Redshift Serverless, train and deploy machine learning models using Amazon Redshift ML, and run inference queries at scale
Key Features:
- Leverage supervised learning to build binary classification, multi-class classification, and regression models
- Learn to use unsupervised learning using the K-means clustering method
- Master the art of time series forecasting using Redshift ML
- Purchase of the print or Kindle book includes a free PDF eBook
Book Description:
Amazon Redshift Serverless enables organizations to run petabyte-scale cloud data warehouses quickly and in a cost-effective way, enabling data science professionals to efficiently deploy cloud data warehouses and leverage easy-to-use tools to train models and run predictions. This practical guide will help developers and data professionals working with Amazon Redshift data warehouses to put their SQL knowledge to work for training and deploying machine learning models.
The book begins by helping you to explore the inner workings of Redshift Serverless as well as the foundations of data analytics and types of data machine learning. With the help of step-by-step explanations of essential concepts and practical examples, you'll then learn to build your own classification and regression models. As you advance, you'll find out how to deploy various types of machine learning projects using familiar SQL code, before delving into Redshift ML. In the concluding chapters, you'll discover best practices for implementing serverless architecture with Redshift.
By the end of this book, you'll be able to configure and deploy Amazon Redshift Serverless, train and deploy machine learning models using Amazon Redshift ML, and run inference queries at scale.
What You Will Learn:
- Utilize Redshift Serverless for data ingestion, data analysis, and machine learning
- Create supervised and unsupervised models and learn how to supply your own custom parameters
- Discover how to use time series forecasting in your data warehouse
- Create a SageMaker endpoint and use that to build a Redshift ML model for remote inference
- Find out how to operationalize machine learning in your data warehouse
- Use model explainability and calculate probabilities with Amazon Redshift ML
Who this book is for:
Data scientists and machine learning developers working with Amazon Redshift who want to explore its machine-learning capabilities will find this definitive guide helpful. A basic understanding of machine learning techniques and working knowledge of Amazon Redshift is needed to make the most of this book.
商品描述(中文翻譯)
**強化並部署 Amazon Redshift Serverless,使用 Amazon Redshift ML 訓練和部署機器學習模型,並大規模運行推斷查詢**
**主要特點:**
- 利用監督式學習建立二元分類、多類別分類和回歸模型
- 學習使用 K-means 聚類法進行非監督式學習
- 精通使用 Redshift ML 進行時間序列預測
- 購買印刷版或 Kindle 書籍可獲得免費 PDF 電子書
**書籍描述:**
Amazon Redshift Serverless 使組織能夠快速且具成本效益地運行 PB 級雲端數據倉庫,讓數據科學專業人員能有效部署雲端數據倉庫並利用易於使用的工具來訓練模型和運行預測。本實用指南將幫助開發人員和數據專業人員利用 Amazon Redshift 數據倉庫,將他們的 SQL 知識應用於訓練和部署機器學習模型。
本書首先幫助您探索 Redshift Serverless 的內部運作,以及數據分析的基礎和機器學習的數據類型。在逐步解釋基本概念和實用範例的幫助下,您將學會建立自己的分類和回歸模型。隨著進展,您將了解如何使用熟悉的 SQL 代碼部署各類型的機器學習專案,然後深入了解 Redshift ML。在結尾章節中,您將發現使用 Redshift 實施無伺服器架構的最佳實踐。
在本書結束時,您將能夠配置和部署 Amazon Redshift Serverless,使用 Amazon Redshift ML 訓練和部署機器學習模型,並大規模運行推斷查詢。
**您將學到的內容:**
- 利用 Redshift Serverless 進行數據攝取、數據分析和機器學習
- 創建監督式和非監督式模型,並學習如何提供自定義參數
- 探索如何在數據倉庫中使用時間序列預測
- 創建 SageMaker 端點並使用該端點構建 Redshift ML 模型以進行遠程推斷
- 瞭解如何在數據倉庫中實現機器學習的運營化
- 使用模型可解釋性並計算 Amazon Redshift ML 的概率
**本書適合誰:**
希望探索 Amazon Redshift 機器學習能力的數據科學家和機器學習開發人員將會發現這本權威指南非常有幫助。需要對機器學習技術有基本了解,並具備 Amazon Redshift 的工作知識,以充分利用本書。