Machine Learning Engineering with Python - Second Edition: Manage the lifecycle of machine learning models using MLOps with practical examples
暫譯: 使用 Python 的機器學習工程 - 第二版:透過實務範例管理機器學習模型的生命週期與 MLOps
McMahon, Andrew
- 出版商: Packt Publishing
- 出版日期: 2023-08-31
- 售價: $1,870
- 貴賓價: 9.5 折 $1,777
- 語言: 英文
- 頁數: 462
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1837631964
- ISBN-13: 9781837631964
-
相關分類:
Python、程式語言、Machine Learning
立即出貨 (庫存=1)
買這商品的人也買了...
-
$301機器學習的算法分析和實踐
-
$680$530
相關主題
商品描述
Transform your machine learning projects into successful deployments with this practical guide on how to build and scale solutions that solve real-world problems
Includes a new chapter on generative AI and large language models (LLMs) and building a pipeline that leverages LLMs using LangChain
Key Features:
- This second edition delves deeper into key machine learning topics, CI/CD, and system design
- Explore core MLOps practices, such as model management and performance monitoring
- Build end-to-end examples of deployable ML microservices and pipelines using AWS and open-source tools
Book Description:
Machine Learning Engineering with Python, 2nd Edition, is the practical guide that MLOps and ML engineers need to build robust solutions to solve real-world problems, providing you with the skills and knowledge you need to stay ahead in this rapidly evolving field.
The book takes a hands-on, examples-focused approach providing essential technical concepts, implementation patterns, and development methodologies. You'll go from understanding the key steps of the machine learning development lifecycle to building and deploying robust machine learning solutions. Once you've mastered the basics, you'll get hands-on with deployment architectures and discover methods for scaling up your solutions.
This edition goes deeper into ML engineering and MLOps, with a sharper focus on ML. You'll take CI/CD further with continuous training and testing and go in-depth into data and concept drift.
With a new generative AI chapter, explore Hugging Face, PyTorch, and GitHub Copilot, and consume an LLM via an API using LangChain. You'll also cover deep learning considerations regarding workflow, hardware, and scaling up workloads, as well as orchestrating workflows with Airlfow and Kafka. And take advantage of ZenML as an open-source option for pipelining dataflows, and take deployment further with canary, blue, and green deployments.
What You Will Learn:
- Plan and manage stages of machine learning development projects
- Explore ANNs, DNNs, and LLMs, and get to grips with the rise of generative AI in MLOps
- Use Python to package your own ML tools and scale up solutions with Apache Spark, Kubernetes, and Apache Airflow
- Use AutoML for hyperparameter tuning
- Detect drift and build robust mechanisms into your solutions
- Supercharge your error handling with robust control flows and vulnerability scanning
- Host and build an ML microservice using AWS and Flask
Who this book is for:
This book is designed for MLOps and ML engineers, data scientists, and software developers who want to build robust solutions that use machine learning to solve real-world problems. If you're not a developer but want to manage or understand the product lifecycle of these systems, you'll also find this book useful. It assumes a basic knowledge of machine learning concepts and intermediate programming experience in Python. With its focus on practical skills and real-world examples, this book is an essential resource for anyone looking to advance their machine learning engineering career.
商品描述(中文翻譯)
將您的機器學習專案轉變為成功的部署,這本實用指南將教您如何構建和擴展解決現實世界問題的解決方案
包括一章關於生成式人工智慧和大型語言模型(LLMs)以及使用 LangChain 構建利用 LLM 的管道
主要特點:
- 本第二版深入探討關鍵的機器學習主題、CI/CD 和系統設計
- 探索核心的 MLOps 實踐,例如模型管理和性能監控
- 使用 AWS 和開源工具構建可部署的 ML 微服務和管道的端到端範例
書籍描述:
《使用 Python 的機器學習工程(第二版)》是 MLOps 和 ML 工程師所需的實用指南,幫助他們構建穩健的解決方案以解決現實世界的問題,提供您在這個快速發展的領域中保持領先所需的技能和知識。
本書採取實作導向、以範例為重點的方法,提供必要的技術概念、實作模式和開發方法論。您將從理解機器學習開發生命週期的關鍵步驟開始,進而構建和部署穩健的機器學習解決方案。一旦掌握基礎,您將親自操作部署架構,並發現擴展解決方案的方法。
本版更深入探討 ML 工程和 MLOps,並更專注於 ML。您將進一步推進 CI/CD,進行持續訓練和測試,並深入研究數據和概念漂移。
隨著新增加的生成式人工智慧章節,探索 Hugging Face、PyTorch 和 GitHub Copilot,並通過 API 使用 LangChain 消耗 LLM。您還將涵蓋有關工作流程、硬體和擴展工作負載的深度學習考量,以及使用 Airflow 和 Kafka 協調工作流程。並利用 ZenML 作為開源選項來管道化數據流,並通過金絲雀、藍綠部署進一步推進部署。
您將學到的內容:
- 計劃和管理機器學習開發專案的各個階段
- 探索 ANN、DNN 和 LLM,並了解生成式人工智慧在 MLOps 中的興起
- 使用 Python 打包自己的 ML 工具,並使用 Apache Spark、Kubernetes 和 Apache Airflow 擴展解決方案
- 使用 AutoML 進行超參數調整
- 檢測漂移並在解決方案中構建穩健的機制
- 通過穩健的控制流程和漏洞掃描來強化錯誤處理
- 使用 AWS 和 Flask 托管和構建 ML 微服務
本書適合誰:
本書專為 MLOps 和 ML 工程師、數據科學家和希望構建使用機器學習解決現實世界問題的穩健解決方案的軟體開發人員而設。如果您不是開發人員,但希望管理或了解這些系統的產品生命週期,您也會發現本書有用。本書假設讀者具備基本的機器學習概念知識和中級的 Python 編程經驗。由於本書專注於實用技能和現實範例,對於任何希望提升其機器學習工程職業生涯的人來說,都是一本必備的資源。