Applied Time Series Analysis and Forecasting with Python

Huang, Changquan, Petukhina, Alla

  • 出版商: Springer
  • 出版日期: 2023-10-20
  • 售價: $1,370
  • 貴賓價: 9.5$1,302
  • 語言: 英文
  • 頁數: 372
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3031135865
  • ISBN-13: 9783031135866
  • 相關分類: Python程式語言
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This textbook presents methods and techniques for time series analysis and forecasting and shows how to use Python to implement them and solve data science problems. It covers not only common statistical approaches and time series models, including ARMA, SARIMA, VAR, GARCH and state space and Markov switching models for (non)stationary, multivariate and financial time series, but also modern machine learning procedures and challenges for time series forecasting. Providing an organic combination of the principles of time series analysis and Python programming, it enables the reader to study methods and techniques and practice writing and running Python code at the same time. Its data-driven approach to analyzing and modeling time series data helps new learners to visualize and interpret both the raw data and its computed results. Primarily intended for students of statistics, economics and data science with an undergraduate knowledge of probability and statistics, the book will equallyappeal to industry professionals in the fields of artificial intelligence and data science, and anyone interested in using Python to solve time series problems.

商品描述(中文翻譯)

本教科書介紹了時間序列分析和預測的方法與技術,並展示如何使用 Python 實現這些方法以解決數據科學問題。內容涵蓋了常見的統計方法和時間序列模型,包括 ARMA、SARIMA、VAR、GARCH 以及針對(非)平穩、多變量和金融時間序列的狀態空間和馬可夫切換模型,還包括現代機器學習程序和時間序列預測的挑戰。這本書有機地結合了時間序列分析的原則和 Python 編程,使讀者能夠同時學習方法和技術,並練習編寫和運行 Python 代碼。其數據驅動的方法有助於新學習者可視化和解釋原始數據及其計算結果。本書主要針對具有本科概率和統計知識的統計學、經濟學和數據科學學生,同時也對人工智慧和數據科學領域的行業專業人士,以及任何有興趣使用 Python 解決時間序列問題的人士具有吸引力。

作者簡介

Changquan Huang is an Associate Professor at the Department of Statistics and Data Science, School of Economics, Xiamen University (XMU), China. He obtained his PhD in Statistics from The Chinese University of Hong Kong. For over 18 years, he has taught the course Time Series Analysis at XMU. He has authored and translated monographs in Chinese, including Bayesian Statistics with R (Tsinghua University Press 2017) and Time Series and Financial Data Analysis (China Statistics Press 2004). His research interests now cover applied statistics and artificial intelligence methods for time series.

Alla Petukhina is a Lecturer at the School of Computing, Communication and Business, HTW Berlin, Germany. She was a postdoctoral researcher at the School of Business and Economics at the Humboldt-Universität zu Berlin, where she obtained her PhD in Statistics in 2018. Her research interests include asset allocation strategies, regression shrinkage techniques, quantiles and expectiles, history of statistics and investment strategies with crypto-currencies.

作者簡介(中文翻譯)

常全黃是中國廈門大學經濟學院統計與數據科學系的副教授。他在香港中文大學獲得統計學博士學位。超過18年來,他在廈門大學教授時間序列分析課程。他著作並翻譯了多部中文專著,包括《使用R的貝葉斯統計》(清華大學出版社 2017)和《時間序列與金融數據分析》(中國統計出版社 2004)。他目前的研究興趣涵蓋應用統計學和時間序列的人工智慧方法。

阿拉·佩圖基娜是德國柏林應用科技大學計算、通信與商業學院的講師。她曾在柏林洪堡大學商學與經濟學院擔任博士後研究員,並於2018年獲得統計學博士學位。她的研究興趣包括資產配置策略、回歸收縮技術、分位數與期望數、統計學歷史以及與加密貨幣相關的投資策略。