L-Functions: An Elementary Introduction
暫譯: L-函數:初步介紹

Lombardo, Davide

  • 出版商: Springer
  • 出版日期: 2025-04-27
  • 售價: $2,770
  • 貴賓價: 9.5$2,632
  • 語言: 英文
  • 頁數: 261
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3031851447
  • ISBN-13: 9783031851445
  • 相關分類: 離散數學 Discrete-mathematics
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book provides an accessible introduction to the theory of L-functions, emphasising their central role in number theory and their direct applications to key results. Designed to be elementary, it offers readers a clear pathway into the subject, starting from minimal background. It describes several important classes of L-functions -- Riemann and Dedekind zeta functions, Dirichlet L-functions, and Hecke L-functions (for characters with finite image) -- by showing how they are all special cases of the construction, due to Artin, of the L-function of a Galois representation. The analytic properties of abelian L-functions are presented in detail, including the full content of Tate's thesis, which establishes analytic continuation and functional equations via harmonic analysis. General Hecke L-functions are also discussed, using the modern perspective of idèles and adèles to connect their analytic theory with the representation-theoretic approach of Artin's L-functions. A distinguishing feature of this book is its accessibility: while largely avoiding arithmetic geometry, it provides introductions to both algebraic number theory and key aspects of representation theory. This approach ensures that the material is accessible to both beginning graduate students and advanced undergraduates. Applications play a central role throughout, highlighting how L-functions underpin significant results in number theory. The book provides complete proofs of the prime number theorem, Dirichlet's theorem on primes in arithmetic progressions, Chebotarev's density theorem, and the analytic class number formula, demonstrating the power of the theory in solving classical problems. It serves as an ideal introduction for advanced undergraduates and beginning graduate students and can also be a useful reference for preparing a course on the subject.

商品描述(中文翻譯)

本書提供了對 L-函數理論的易懂介紹,強調其在數論中的核心角色及其對關鍵結果的直接應用。書中設計為基礎性質,為讀者提供了一條清晰的進入主題的途徑,從最少的背景知識開始。它描述了幾個重要的 L-函數類別——黎曼(Riemann)和德德金(Dedekind)ζ函數、狄利克雷(Dirichlet)L-函數以及赫克(Hecke)L-函數(對於有限像的角色)——通過展示它們如何都是阿廷(Artin)所構造的伽羅瓦表示的 L-函數的特例。書中詳細介紹了阿貝爾 L-函數的解析性質,包括塔特(Tate)論文的完整內容,該論文通過調和分析建立了解析延續和函數方程。書中還討論了一般的赫克 L-函數,利用現代的理論觀點——理想(idèles)和阿德爾(adèles)——將其解析理論與阿廷的 L-函數的表示理論方法相連接。本書的一個顯著特點是其可及性:雖然大部分避免了算術幾何,但它提供了對代數數論和表示理論關鍵方面的介紹。這種方法確保了材料對於初學的研究生和高年級本科生都是可及的。應用在整本書中扮演著核心角色,突顯了 L-函數如何支撐數論中的重要結果。本書提供了素數定理、狄利克雷在算術級數中的素數定理、切博塔列夫(Chebotarev)密度定理以及解析類別數公式的完整證明,展示了該理論在解決經典問題中的力量。它是高年級本科生和初學研究生的理想入門書籍,也可以作為準備相關課程的有用參考。

作者簡介

Davide Lombardo is a number theorist based at the University of Pisa, Italy. He studied at the Scuola Normale Superiore (Italy) and the Université Paris-Saclay (France), and obtained his PhD from the latter in 2016. After a short post-doctoral position in Hannover (Germany), he joined the Department of Mathematics in Pisa in 2017, first as a researcher and then - since 2022 - as an associate professor. His work focuses mainly on the geometric and arithmetic interplay between Galois representations and abelian varieties. L-functions are a fundamental tool in this area, providing a bridge between arithmetic and analytic objects.

作者簡介(中文翻譯)

達維德·隆巴多 是一位數論學家,現任教於意大利比薩大學。他曾在意大利的斯庫奧拉·諾馬萊·蘇佩里奧雷和法國的巴黎薩克雷大學學習,並於2016年在後者獲得博士學位。在德國漢諾威短暫的博士後職位之後,他於2017年加入比薩數學系,最初擔任研究員,並自2022年起擔任副教授。他的研究主要集中在伽羅瓦表示與阿貝爾多樣體之間的幾何與算術相互作用。L-函數是這個領域中的一個基本工具,為算術與分析對象之間提供了橋樑。