Domain Adaptation in Computer Vision Applications (Advances in Computer Vision and Pattern Recognition)
暫譯: 計算機視覺應用中的領域適應(計算機視覺與模式識別進展)

  • 出版商: Springer
  • 出版日期: 2017-10-02
  • 售價: $6,200
  • 貴賓價: 9.5$5,890
  • 語言: 英文
  • 頁數: 344
  • 裝訂: Hardcover
  • ISBN: 3319583468
  • ISBN-13: 9783319583464
  • 相關分類: Computer Vision
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This comprehensive text/reference presents a broad review of diverse domain adaptation (DA) methods for machine learning, with a focus on solutions for visual applications. The book collects together solutions and perspectives proposed by an international selection of pre-eminent experts in the field, addressing not only classical image categorization, but also other computer vision tasks such as detection, segmentation and visual attributes.

Topics and features: surveys the complete field of visual DA, including shallow methods designed for homogeneous and heterogeneous data as well as deep architectures; presents a positioning of the dataset bias in the CNN-based feature arena; proposes detailed analyses of popular shallow methods that addresses landmark data selection, kernel embedding, feature alignment, joint feature transformation and classifier adaptation, or the case of limited access to the source data; discusses more recent deep DA methods, including discrepancy-based adaptation networks and adversarial discriminative DA models; addresses domain adaptation problems beyond image categorization, such as a Fisher encoding adaptation for vehicle re-identification, semantic segmentation and detection trained on synthetic images, and domain generalization for semantic part detection; describes a multi-source domain generalization technique for visual attributes and a unifying framework for multi-domain and multi-task learning.

This authoritative volume will be of great interest to a broad audience ranging from researchers and practitioners, to students involved in computer vision, pattern recognition and machine learning.

商品描述(中文翻譯)

這本綜合性文本/參考書對機器學習中各種領域適應(Domain Adaptation, DA)方法進行了廣泛的回顧,重點關注視覺應用的解決方案。該書匯集了來自國際上傑出專家的解決方案和觀點,涵蓋了不僅僅是經典的圖像分類,還包括其他計算機視覺任務,如檢測、分割和視覺屬性。

主題和特點:調查視覺DA的完整領域,包括為同質和異質數據設計的淺層方法以及深度架構;在基於CNN的特徵領域中定位數據集偏差;提出對流行淺層方法的詳細分析,涉及地標數據選擇、核嵌入、特徵對齊、聯合特徵轉換和分類器適應,或在有限訪問源數據的情況下的案例;討論更近期的深度DA方法,包括基於差異的適應網絡和對抗性判別DA模型;解決超越圖像分類的領域適應問題,例如用於車輛重新識別的Fisher編碼適應、基於合成圖像訓練的語義分割和檢測,以及語義部分檢測的領域泛化;描述了一種針對視覺屬性的多源領域泛化技術和一個統一的多領域和多任務學習框架。

這本權威的著作將對廣泛的讀者群體產生極大興趣,從研究人員和實踐者到參與計算機視覺、模式識別和機器學習的學生。