Feature Extraction in Face Recognition (Paperback)

David Masip

  • 出版商: VDM Verlag
  • 出版日期: 2008-04-02
  • 售價: $2,800
  • 貴賓價: 9.5$2,660
  • 語言: 英文
  • 頁數: 184
  • 裝訂: Paperback
  • ISBN: 3836472953
  • ISBN-13: 9783836472951
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

As technology evolves, we develop new devices equipped with embedded cameras. An important application using this technology is face classification, usually applied to: surveillance, biometric verification or gesture recognition in user-friendly interfaces. Traditionally, images are treated as high dimensional vectors with the pixel values. Feature extraction is used to reduce this dimensionality, learning invariant discriminant characteristics that improve the posterior classification on the face subspace. The first part of this book introduces the classifier combination methods to derive a new family of feature extraction techniques making no specific statistical assumptions on the data to classify. Psychological studies suggest that humans give a lot of importance to external features (hair, forehead and lateral zone). In the second part of this book we introduce a top-down fragment-based framework to model the external information of face images, solving the lack of alignment of the external regions and the extreme diversity among subjects. We conclude with some methods to combine internal and external features, improving the face classification results.

商品描述(中文翻譯)

隨著科技的進步,我們開發出配備嵌入式攝影機的新裝置。這項技術的一個重要應用是臉部分類,通常應用於:監控、生物識別驗證或用戶友好的介面中的手勢識別。傳統上,圖像被視為具有高維度的向量,包含像素值。特徵提取用於降低這一維度,學習不變的判別特徵,以改善臉部子空間的後續分類。本書的第一部分介紹了分類器組合方法,以推導出一系列新的特徵提取技術,這些技術對於要分類的數據不做特定的統計假設。心理學研究表明,人類非常重視外部特徵(如頭髮、額頭和側面區域)。在本書的第二部分,我們介紹了一個自上而下的基於片段的框架,以建模臉部圖像的外部信息,解決外部區域缺乏對齊和受試者之間極大多樣性的問題。我們最後提出一些方法來結合內部和外部特徵,以改善臉部分類的結果。