Learning Spark: Lightning-Fast Big Data Analysis (Paperback)
暫譯: 學習 Spark:閃電般快速的大數據分析(平裝本)
Holden Karau, Andy Konwinski, Patrick Wendell, Matei Zaharia
- 出版商: O'Reilly
- 出版日期: 2015-02-27
- 售價: $1,470
- 貴賓價: 9.5 折 $1,397
- 語言: 英文
- 頁數: 276
- 裝訂: Paperback
- ISBN: 1449358624
- ISBN-13: 9781449358624
-
相關分類:
Spark、大數據 Big-data、Data Science
-
相關翻譯:
Spark 學習手冊 (Learning Spark: Lightning-Fast Big Data Analysis) (繁中版)
-
其他版本:
Learning Spark: Lightning-Fast Data Analytics, 2/e (Paperback)
銷售排行:
🥈 2016/6 英文書 銷售排行 第 2 名
買這商品的人也買了...
-
人月神話:軟體專案管理之道 (20 週年紀念版)(The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition, 2/e)$480$379 -
工程數學(二): 常微分方程式、特殊函數暨 Laplace 轉換(修訂版)$480$470 -
R 軟體 : 應用統計方法 (修訂版)$720$684 -
精通 Python 3 程式設計, 2/e (Programming in Python 3: A Complete Introduction to the Python Language, 2/e)$680$537 -
大話資料結構$590$466 -
Python for Data Analysis (Paperback)$1,470$1,397 -
Hadoop 技術手冊, 3/e (Hadoop: The Definitive Guide, 3/e)$880$695 -
快快樂樂學 Excel 2013─善用資料圖表、函數巨集的精算達人$450$356 -
嗯!Office 2013 我也會─超實用的活動 DM X 財會營收 X 銷售分析 X 互動影音 X 雲端協同範例即上手$480$374 -
Hadoop 管理手冊 (Hadoop Operations)$580$493 -
超圖解 Arduino 互動設計入門, 2/e$680$578 -
徹底研究 Hadoop 實戰分析$720$612 -
改變世界的九大演算法 : 讓今日電腦無所不能的最強概念 (Nine Algorithms That Changed the Future: The Ingenious Ideas That Drive Today’s Computers)$360$284 -
ASP.NET MVC 5 網站開發美學$780$616 -
啊哈!圖解演算法必學基礎$350$298 -
最新 Hadoop Yarn 的精華:MapReduce 機制$480$408 -
Android 程式設計入門、應用到精通--增訂第三版 (適用 5.X~1.X, Android Wear 穿戴式裝置)$560$442 -
AngularJS 建置與執行 (AngularJS: Up and Running: Enhanced Productivity with Structured Web Apps)$520$411 -
$825Advanced Analytics with Spark: Patterns for Learning from Data at Scale (Paperback) -
$2,048Hadoop: The Definitive Guide, 4/e (Paperback) -
SDN: 軟體定義網路 (SDN: Software Defined Networks)$580$458 -
Docker 入門與實戰$450$356 -
精通 Python|運用簡單的套件進行現代運算 (Introducing Python: Modern Computing in Simple Packages)$780$616 -
完整學會 Git, GitHub, Git Server 的24堂課$360$284 -
CSS Secrets 中文版|解決網頁設計問題的有效秘訣 (CSS Secrets: Better Solutions to Everyday Web Design Problems)$680$537
相關主題
商品描述
The Web is getting faster, and the data it delivers is getting bigger. How can you handle everything efficiently? This book introduces Spark, an open source cluster computing system that makes data analytics fast to run and fast to write. You’ll learn how to run programs faster, using primitives for in-memory cluster computing. With Spark, your job can load data into memory and query it repeatedly much quicker than with disk-based systems like Hadoop MapReduce.
Written by the developers of Spark, this book will have you up and running in no time. You’ll learn how to express MapReduce jobs with just a few simple lines of Spark code, instead of spending extra time and effort working with Hadoop’s raw Java API.
- Quickly dive into Spark capabilities such as collect, count, reduce, and save
- Use one programming paradigm instead of mixing and matching tools such as Hive, Hadoop, Mahout, and S4/Storm
- Learn how to run interactive, iterative, and incremental analyses
- Integrate with Scala to manipulate distributed datasets like local collections
- Tackle partitioning issues, data locality, default hash partitioning, user-defined partitioners, and custom serialization
- Use other languages by means of pipe() to achieve the equivalent of Hadoop streaming
商品描述(中文翻譯)
網路正在變得更快,所傳遞的數據也越來越大。你如何能有效地處理所有這些?本書介紹了 Spark,一個開源的叢集計算系統,使數據分析的執行速度和編寫速度都變得更快。你將學會如何使用內存叢集計算的原語來更快地運行程序。使用 Spark,你的工作可以將數據加載到內存中並重複查詢,這比使用基於磁碟的系統如 Hadoop MapReduce 快得多。
本書由 Spark 的開發者撰寫,將讓你迅速上手。你將學會如何用幾行簡單的 Spark 代碼來表達 MapReduce 工作,而不是花額外的時間和精力來處理 Hadoop 的原始 Java API。
- 快速深入了解 Spark 的功能,如 collect、count、reduce 和 save
- 使用一種編程範式,而不是混合使用 Hive、Hadoop、Mahout 和 S4/Storm 等工具
- 學習如何運行互動式、迭代式和增量分析
- 與 Scala 整合,像操作本地集合一樣操作分佈式數據集
- 解決分區問題、數據本地性、默認哈希分區、用戶定義的分區器和自定義序列化
- 通過 pipe() 使用其他語言,以實現相當於 Hadoop streaming 的功能
