Hands-On Neural Network Programming with C#: Add powerful neural network capabilities to your C# enterprise applications
Matt R. Cole
- 出版商: Packt Publishing
- 出版日期: 2018-09-28
- 售價: $1,380
- 貴賓價: 9.5 折 $1,311
- 語言: 英文
- 頁數: 328
- 裝訂: Paperback
- ISBN: 1789612012
- ISBN-13: 9781789612011
-
相關分類:
C#
-
相關翻譯:
C# 神經網絡編程 (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
-
$1,250$1,225 -
$625$563 -
$620$527 -
$1,820Assembly Language Step-by-Step: Programming with Linux, 3/e (Paperback)
-
$3,184Advances in Face Detection and Facial Image Analysis
-
$450$383 -
$480$408 -
$1,150$1,127 -
$1,617Deep Learning (Hardcover)
-
$420$332 -
$1,380$1,311 -
$301機器學習與深度學習:通過 C語言模擬
-
$1,520$1,444 -
$1,663Practical Binary Analysis: Build Your Own Linux Tools for Binary Instrumentation, Analysis, and Disassembly (Paperback)
-
$602進化優化算法-基於仿生和種群的電腦智能方法
-
$880$748 -
$600$468 -
$620$484 -
$780$663 -
$600$468 -
$894$849 -
$2,050$1,948 -
$650$514 -
$650$507 -
$2,800$2,660
相關主題
商品描述
Create and unleash the power of neural networks by implementing C# and .Net code
Key Features
- Get a strong foundation of neural networks with access to various machine learning and deep learning libraries
- Real-world case studies illustrating various neural network techniques and architectures used by practitioners
- Cutting-edge coverage of Deep Networks, optimization algorithms, convolutional networks, autoencoders and many more
Book Description
Neural networks have made a surprise comeback in the last few years and have brought tremendous innovation in the world of artificial intelligence.
The goal of this book is to provide C# programmers with practical guidance in solving complex computational challenges using neural networks and C# libraries such as CNTK, and TensorFlowSharp. This book will take you on a step-by-step practical journey, covering everything from the mathematical and theoretical aspects of neural networks, to building your own deep neural networks into your applications with the C# and .NET frameworks.
This book begins by giving you a quick refresher of neural networks. You will learn how to build a neural network from scratch using packages such as Encog, Aforge, and Accord. You will learn about various concepts and techniques, such as deep networks, perceptrons, optimization algorithms, convolutional networks, and autoencoders. You will learn ways to add intelligent features to your .NET apps, such as facial and motion detection, object detection and labeling, language understanding, knowledge, and intelligent search.
Throughout this book, you will be working on interesting demonstrations that will make it easier to implement complex neural networks in your enterprise applications.
What you will learn
- Understand perceptrons and how to implement them in C#
- Learn how to train and visualize a neural network using cognitive services
- Perform image recognition for detecting and labeling objects using C# and TensorFlowSharp
- Detect specific image characteristics such as a face using Accord.Net
- Demonstrate particle swarm optimization using a simple XOR problem and Encog
- Train convolutional neural networks using ConvNetSharp
- Find optimal parameters for your neural network functions using numeric and heuristic optimization techniques.
Who this book is for
This book is for Machine Learning Engineers, Data Scientists, Deep Learning Aspirants and Data Analysts who are now looking to move into advanced machine learning and deep learning with C#. Prior knowledge of machine learning and working experience with C# programming is required to take most out of this book
Table of Contents
- A Quick Refresher
- Building our first Neural Network Together
- Decision Tress and Random Forests
- Face and Motion Detection
- Training CNNs using ConvNetSharp
- Training Autoencoders Using RNNSharp
- Replacing Back Propagation with PSO
- Function Optimizations; How and Why
- Finding Optimal Parameters
- Object Detection with TensorFlowSharp
- Time Series Prediction and LSTM Using CNTK
- GRUs Compared to LSTMs, RNNs, and Feedforward Networks
- Appendix A- Activation Function Timings
- Appendix B- Function Optimization Reference
商品描述(中文翻譯)
創建並發揮神經網絡的力量,通過實現C#和.Net代碼
主要特點
- 通過訪問各種機器學習和深度學習庫,建立神經網絡的堅實基礎
- 實際案例研究,展示實踐者使用的各種神經網絡技術和架構
- 深度網絡、優化算法、卷積網絡、自編碼器等尖端技術的全面覆蓋
書籍描述
神經網絡在過去幾年中取得了意外的回歸,並在人工智能領域帶來了巨大的創新。
本書的目標是為C#程序員提供實用指南,以使用神經網絡和C#庫(如CNTK和TensorFlowSharp)解決複雜的計算挑戰。本書將帶您進行一個逐步實踐的旅程,從神經網絡的數學和理論方面開始,到使用C#和.NET框架將自己的深度神經網絡集成到應用程序中。
本書首先為您提供了神經網絡的快速複習。您將學習如何使用Encog、Aforge和Accord等軟件包從頭開始構建神經網絡。您將學習各種概念和技術,如深度網絡、感知器、優化算法、卷積網絡和自編碼器。您將學習如何為您的.NET應用程序添加智能功能,例如面部和運動檢測、物體檢測和標記、語言理解、知識和智能搜索。
在本書的整個過程中,您將進行有趣的演示,這將使您更容易在企業應用程序中實現複雜的神經網絡。
您將學到什麼
- 了解感知器以及如何在C#中實現它們
- 學習如何使用認知服務訓練和可視化神經網絡
- 使用C#和TensorFlowSharp進行圖像識別,檢測和標記對象
- 使用Accord.Net檢測特定圖像特徵,如面部
- 使用簡單的XOR問題和Encog演示粒子群優化
- 使用ConvNetSharp訓練卷積神經網絡
- 使用數值和啟發式優化技術為您的神經網絡函數找到最佳參數
本書適合人群
本書適合機器學習工程師、數據科學家、深度學習愛好者和數據分析師,他們現在希望進入使用C#進行高級機器學習和深度學習的領域。需要具備機器學習的先備知識和C#編程的工作經驗,以充分利用本書。
目錄
- 快速複習
- 一起構建我們的第一個神經網絡
- 決策樹和隨機森林
- 面部和運動檢測
- 使用ConvNetSharp訓練CNN
- 使用RNNSharp訓練自編碼器
- 用PSO替換反向傳播
- 函數優化:如何以及為什麼
- 找到最佳參數
- 使用TensorFlowSharp進行物體檢測
- 使用CNTK進行時間序列預測和LSTM
- GRU與LSTM、RNN和前饋網絡的比較
- 附錄A-激活函數時間
- 附錄B-函數優化參考