Mastering Machine Learning Algorithms - Second Edition
Giuseppe Bonaccorso
- 出版商: Packt Publishing
- 出版日期: 2020-01-31
- 售價: $1,500
- 貴賓價: 9.5 折 $1,425
- 語言: 英文
- 頁數: 798
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1838820299
- ISBN-13: 9781838820299
-
相關分類:
Machine Learning 機器學習 、Algorithms-data-structures 資料結構與演算法
立即出貨 (庫存=1)
買這商品的人也買了...
相關主題
商品描述
Mastering Machine Learning Algorithms, Second Edition helps you harness the real power of machine learning algorithms in order to implement smarter ways of meeting today's overwhelming data needs. This newly updated and revised guide will help you master algorithms used widely in semi-supervised learning, reinforcement learning, supervised learning, and unsupervised learning domains.
You will use all the modern libraries from the Python ecosystem – including NumPy and Keras – to extract features from varied complexities of data. Ranging from Bayesian models to the Markov chain Monte Carlo algorithm to Hidden Markov models, this machine learning book teaches you how to extract features from your dataset, perform complex dimensionality reduction, and train supervised and semi-supervised models by making use of Python-based libraries such as scikit-learn. You will also discover practical applications for complex techniques such as maximum likelihood estimation, Hebbian learning, and ensemble learning, and how to use TensorFlow 2.x to train effective deep neural networks.
By the end of this book, you will be ready to implement and solve end-to-end machine learning problems and use case scenarios
- Understand the characteristics of a machine learning algorithm
- Implement algorithms from supervised, semi-supervised, unsupervised, and RL domains
- Learn how regression works in time-series analysis and risk prediction
- Create, model, and train complex probabilistic models
- Cluster high-dimensional data and evaluate model accuracy
- Discover how artificial neural networks work – train, optimize, and validate them
- Work with autoencoders, Hebbian networks, and GANs
- Updated to include new algorithms and techniques
- Code updated to Python 3.8 & TensorFlow 2.x
- New coverage of regression analysis, time series analysis, deep learning models, and cutting-edge applications
作者簡介
Giuseppe Bonaccorso is Head of Data Science in a large multinational company. He received his M.Sc.Eng. in Electronics in 2005 from University of Catania, Italy, and continued his studies at University of Rome Tor Vergata, and University of Essex, UK. His main interests include machine/deep learning, reinforcement learning, big data, and bio-inspired adaptive systems. He is author of several publications including Machine Learning Algorithms and Hands-On Unsupervised Learning with Python, published by Packt.
目錄大綱
- Machine Learning Model Fundamentals
- Loss functions and Regularization
- Introduction to Semi-Supervised Learning
- Advanced Semi-Supervised Classifiation
- Graph-based Semi-Supervised Learning
- Clustering and Unsupervised Models
- Advanced Clustering and Unsupervised Models
- Clustering and Unsupervised Models for Marketing
- Generalized Linear Models and Regression
- Introduction to Time-Series Analysis
- Bayesian Networks and Hidden Markov Models
- The EM Algorithm
- Component Analysis and Dimensionality Reduction
- Hebbian Learning
- Fundamentals of Ensemble Learning
- Advanced Boosting Algorithms
- Modeling Neural Networks
- Optimizing Neural Networks
- Deep Convolutional Networks
- Recurrent Neural Networks
- Auto-Encoders
- Introduction to Generative Adversarial Networks
- Deep Belief Networks
- Introduction to Reinforcement Learning
- Advanced Policy Estimation Algorithms