機器學習 机器学习

趙衛東 董亮

立即出貨 (庫存 < 3)

買這商品的人也買了...

相關主題

商品描述

機器學習是人工智能的重要技術基礎,涉及的內容十分廣泛。
本書內容涵蓋了機器學習的基礎知識,主要包括機器學習的概論、
統計學習基礎、分類、聚類、神經網絡、貝葉斯網絡、支持向量機、
進化計算、文本分析等經典的機器學習理論知識,
也包括用於大調制解調器器學習的分佈式機器學習算法、
深度學習和加強學習等高等級內容。
此外,還介紹了機器學習的熱門應用領域推薦技術,
並給出了華為機器學習平臺上的實驗。
本書深入淺出、內容全面、案例豐富,每章後都有習題和參考文獻,
便於學生鞏固學習,適用於高等院校本科生、
研究生機器學習、數據分析、數據挖掘等課程的教材,
也可作為對機器學習感興趣的研究人員和工程技術人員的參考資料。

作者簡介

2001年4月畢業於東南大學,獲博士學位。
2001年6月起在復旦大學管理科學與工程博士後流動站工作。
2003年5月進入復旦大學軟件學院,主要負責本科生和各類研究生電子商務、
大數據核心技術和商務智能等課程的教學,
2011年紐約大學Stern商學院訪問學者。
商務智能被評為上海市精品課程,獲得2013年高等教育上海市教學成果獎二等獎。發表論文90多篇,其中被SCI、EI收錄40多篇。
出版專著及教材10多部。獲得上海市2015年上海市科技進步二等獎。

目錄大綱

序言
第一章機器學習概述1 
1.1機器學習簡介1 
1.1.1機器學習簡史1 
1.1.2機器學習主要流派2 
1.2機器學習、人工智能和數據挖掘4 
1.2.1什麼是人工智能4 
1.2.2機器學習、人工智能與數據挖掘5 
1.3典型機器學習應用領域5 
1.4機器學習算法12 
1.5機器學習的一般流程20 

第二章機器學習基本方法23 
2.1統計分析23 
2.1.1統計基礎23 
2.1.2常見概率分佈29 
2.1.3參數估計31 
2.1.4假設檢驗33 
2.1.5線性回歸33 
2.1.6 Logistics回歸37 
2.1.7判別分析38 
2.1.8非線性模型39 
2.2高維數據降維40 
2.2.1主成分分析40 
2.2.2線性判別分析43 
2.2.3局部線性嵌入47 
2.3特徵工程48 
2.3.1特徵構造48 
2.3.2特徵選擇49 
2.3.3特徵提取50 
2.4模型訓練50
2.4.1模型訓練常見術語50 
2.4.2訓練數據收集51 
2.5可視化分析52 
2.5.1可視化分析的作用52 
2.5.2可視化分析方法53 
2.5.3可視化分析常用工具54 
2.5.4常見的可視化圖表56 
2.5.5可視化分析面臨的挑戰62 

第三章決策樹與分類算法64 
3.1決策樹算法64 
3.1.1分支處理66 
3.1.2連續屬性離散化72 
3.1.3過擬合問題74 
3.1.4分類效果評價78 
3.2集成學習83 
3.2.1裝袋法83 
3.2.2提升法84 
3.2.3 GBDT 86 
3.2.4隨機森林87 
3.3決策樹應用89 

第四章聚類分析95 
4.1聚類分析概念95 
4.1. 1聚類方法分類95 
4.1.2良好聚類算法的特徵97 
4.2聚類分析的度量97 
4.2.1外部指標98 
4.2.2內部指標99 
4.3基於劃分的方法101 
4.3.1 k-均值算法101 
4.3 .2 k-medoids算法106
4.3.3 k-prototype算法107 
4.4基於密度聚類107 
4.4.1 DBSCAN算法108 
4.4.2 OPTICS算法110 
4.4.3 DENCLUE算法111 
4.5基於層次的聚類116 
4.5.1 BIRCH聚類117 
4.5.2 CURE算法120 
4.6基於網格的聚類122 
4.7基於模型的聚類123 
4.7.1概率模型聚類123 
4.7.2模糊聚類129 
4.7.3 Kohonen神經網絡聚類129 

第五章文本分析137 
5.1文本分析介紹137 
5.2文本特徵提取及表示138 
5.2.1 TF-IDF 138 
5.2.2信息增益139 
5.2.3互信息139 
5.2.4卡方統計量140 
5.2.5詞嵌入141 
5.2.6語言模型142 
5.2. 7向量空間模型144 
5.3知識圖譜146 
5.3.1知識圖譜相關概念147 
5.3.2知識圖譜的存儲147 
5.3.3知識圖譜挖掘與計算148 
5.3.4知識圖譜的構建過程150 
5.4詞法分析155
5.4.1文本分詞156 
5.4.2命名實體識別159 
5.4.3詞義消歧160 
5.5句法分析161 
5.6語義分析163 
5.7文本分析應用164 
5.7.1文本分類164 
5.7.2信息抽取167 
5.7.3問答系統168 
5.7.4情感分析169 
5.7.5自動摘要171 

第六章神經網絡173 
6.1神經網絡介紹173 
6.1.1前饋神經網絡173 
6.1.2反饋神經網絡176 
6.1.3自組織神經網絡179 
6.2神經網絡相關概念180 
6.2.1激活函數180 
6.2.2損失函數184 
6.2.3學習率185 
6.2.4過擬合188 
6.2.5模型訓練中的問題189 
6.2.6神經網絡效果評價192 
6.3神經網絡應用192 

第七章貝葉斯網絡197 
7.1貝葉斯理論概述197 
7.1.1貝葉斯方法的基本觀點197 
7.1.2貝葉斯網絡的應用198 
7.2貝葉斯概率基礎198 
7.2.1概率論198 
7.2 .2貝葉斯概率199
7.3樸素貝葉斯分類模型200 
7.4貝葉斯網絡203 
7.5貝葉斯網絡的應用209 
7.5.1中文分詞210 
7.5.2機器翻譯210 
7.5.3故障診斷211 
7.5.4疾病診斷211 

第八章支持向量機215 
8.1支持向量機模型215 
8.1.1核函數215 
8.1.2模型原理分析216 
8.2支持向量機應用219 

第九章進化計算226 
9.1遺傳算法的基礎226 
9.1.1基因重組(交叉)與基因突變227 
9.1.2遺傳算法實現技術228 
9.1.3遺傳算法案例234 
9.2蟻群算法237 
9.2.1蟻群算法應用案例238 
9.3蜂群算法簡介239 
9.3.1蜂群算法應用案例241 

第十章分佈式機器學習245 
10.1分佈式機器學習基礎245 
10.1.1參數服務器245 
10.1.2分佈式並行計算類型246 
10.2分佈式機器學習框架247 
10.3並行決策樹254 
10.4並行k-均值算法255 

第十一章深度學習258 
11.1卷積神經網絡258
11.1.1卷積神經網絡的整體結構259 
11.1.2常見卷積神經網絡262 
11.2循環神經網絡271 
11.2.1 RNN基本原理271 
11.2.2長短期記憶網絡274 
11.2.3門限循環單元277 
11.3深度學習流行框架278 

第十二章高等級深度學習281 
12.1高等級卷積神經網絡281 
12.1.1目標檢測與追踪281 
12.1.2目標分割295 
12.2高等級循環神經網絡應用301 
12.2.1 Encoder-Decoder模型301 
12.2.2注意力模型301 
12.2.3 LSTM高等級應用302 
12.3無監督式深度學習307 
12.3.1深度信念網絡307 
12.3.2自動編碼器網絡309 
12.3.3生成對抗網絡模型312 
12.4強化學習316 
12.4 .1增強學習基礎316 
12.4.2深度增強學習318 
12.5遷移學習321 
12.6對偶學習324 

第十三章推薦系統327 
13.1推薦系統介紹327 
13.1.1推薦系統的應用場景327 
13.2推薦系統通用模型329
13.2.1推薦系統結構329 
13.2.2基於內容的推薦330 
13.2.3基於協同過濾的推薦算法331 
13.2.4基於圖的模型334 
13.2.5基於關聯規則的推薦335 
13.2.6基於知識的推薦341 
13.2.7基於標籤的推薦342 
13.3推薦系統評測343 
13.3.1評測方法343 
13.3.2評測指標345 
13.4推薦系統常見問題349 
13.4.1冷啟動問題349 
13.4.2推薦系統注意事項351 
13.5推薦系統實例352 

第十四章實驗364 
14.1華為FusionInsight產品平台介紹364 
14.2銀行定期存款業務預測365 
14.2.1上傳銀行客戶及存貸款數據366 
14.2.2準備存款業務分析工作區367 
14.2.3創建數據挖掘流程368 
14.2.4定期存款業務模型保存和應用375 
14.3客戶分群378 
14.3.1分析業務需求379 
14.3.2上傳客戶信息數據381 
14.3.3準備客戶分群工作區382 
14.3.4創建數據挖掘流程383
14.3.5 客戶分群模型保存和應用392