機器學習與因子投資 — 從基礎到實踐 Machine Learning for Factor Investing: R Version
[法]紀堯姆·科克雷(Guillaume Coqueret)
- 出版商: 人民郵電
- 出版日期: 2023-09-01
- 售價: $774
- 貴賓價: 9.5 折 $735
- 語言: 簡體中文
- 頁數: 305
- ISBN: 7115621772
- ISBN-13: 9787115621771
-
相關分類:
投資理財 Investment、Machine Learning
- 此書翻譯自: Machine Learning for Factor Investing: R Version
立即出貨 (庫存=1)
買這商品的人也買了...
-
$380$342 -
$550$435 -
$260$234 -
$450$356 -
$420$332 -
$450$356 -
$680$537 -
$230數據結構與算法:Python語言描述
-
$301Python網絡數據採集
-
$460$414 -
$880$695 -
$1,200$948 -
$607Python 金融大數據風控建模實戰:基於機器學習
-
$534$507 -
$449金融科技人工智能實戰(以Python為工具)
-
$414$393 -
$454智能風控與反欺詐:體系、算法與實踐
-
$407金融信用評估 — 大數據背景下的統計學與機器學習應用
-
$534$507 -
$534$507 -
$611Python 圖像處理經典實例
-
$534$507 -
$648$616 -
$1,163深度學習精粹與 PyTorch 實踐
-
$594$564
相關主題
商品描述
本書首先介紹了將大數據集應用於機器學習的基礎知識和因子投資的基本理論;之後,本書介紹了監督學習模式下可用於預測金融變量的幾個基本機器學習算法,包括懲罰性線性回歸、支持向量機等;接下來,本書介紹了將這些機器學習算法應用於金融領域的實戰方法和細節;最後,本書討論了一系列與機器學習和因子投資相關的進階話題,包括模型的黑箱問題、因果關系問題和無監督學習算法等。本書適合金融機構從業者以及金融類專業學生系統瞭解因子投資的理論與方法,以及機器學習算法在因子投資領域的應用。
作者簡介
[法]纪尧姆·科克雷(Guillaume Coqueret)
法国里昂商学院的金融和数据科学副教授,主要研究方向是机器学习工具在金融经济学中的应用。
[法]托尼·吉达(Tony Guida)
法国RAM Active Investments公司执行董事,machineByte智库主席,著有Big Data and Machine Learning in Quantitative Investment一书。
译者简介
周亮
金融工程博士,毕业于清华大学,在国内外金融学核心期刊上发表学术论文80余篇。现任湖南财政经济学院讲师,在多家私募证券基金担任顾问。
周凡程
理学硕士,毕业于国防科技大学,在机器学习和量化投资领域有着丰富的理论研究和实践经验,目前主要从事投资组合管理的研发工作。
目錄大綱
第 1 章 符號與數據
1.1 符號
1.2 數據集
第 2 章 簡介
2.1 背景
2.2 投資組合構建流程
2.3 機器學習不是“魔杖”
第3 章 因子投資與資產定價異象
3.1 簡介
3.2 異象檢驗
3.3 因子還是特徵
3.4 熱門話題:動量、擇時和ESG
3.5 與機器學習的聯系
3.6 代碼練習
第4 章 數據預處理
4.1 認識你的數據
4.2 缺失值
4.3 異常值檢測
4.4 特徵工程
4.5 打標簽
4.6 處理持續性問題
4.7 擴展
4.8 代碼和結果
4.9 代碼練習
第5 章 懲罰性線性回歸和稀疏對沖最小方差組合
5.1 懲罰性線性回歸
5.2 稀疏對沖最小方差組合
5.3 預測性回歸
5.4 代碼練習
第6 章 樹模型
6.1 簡單決策樹
6.2 隨機森林
6.3 提升樹:Adaboost
6.4 提升樹:極端梯度提升(extreme gradient boosting)算法
6.5 討論
6.6 代碼練習
第7 章 神經網絡
7.1 原始感知機
7.2 多層感知機
7.3 其他實際問題
7.4 關於基礎多層感知機的代碼示例和註釋
7.5 循環神經網絡
7.6 其他常用架構
7.7 代碼練習
第8 章支持向量機
8.1 用SVM 進行分類
8.2 用SVM 進行回歸
8.3 實踐
8.4 代碼練習
第9章 貝葉斯方法
9.1 貝葉斯框架
9.2 貝葉斯採樣
9.3 貝葉斯線性回歸
9.4 樸素貝葉斯分類器
9.5 貝葉斯加性回歸樹
第 10章 驗證和調參
10.1 學習參數
10.2 驗證
10.3 尋找好的參數
10.4 關於驗證的簡短討論
第 11章 集成模型
11.1 線性集成
11.2 堆疊集成
11.3 擴展
11.4 代碼練習
第 12章 投資組合回測
12.1 基本設定
12.2 將信號轉化為投資組合的權重
12.3 績效評估
12.4 常見錯誤和問題
12.5 非平穩性:預測是困難的
12.6 第 一個例子:一個完整的回測
12.7 第二個例子:過擬合
12.8 代碼練習
第 13 章 可解釋性
13.1 全局模型
13.2 局部模型
第 14 章兩個關鍵概念:因果關系和非平穩性
14.1 因果關系
14.2 處理不斷變化的環境
第 15 章無監督學習
15.1 預測變量的相關性問題
15.2 主成分分析和自編碼器
15.3 k -means 聚類
15.4 最近鄰方法
15.5 代碼練習
第 16 章強化學習
16.1 理論佈局
16.2 維度災難
16.3 策略梯度
16.4 簡單案例
16.5 結束語
16.6 練習
附錄1 變量說明
附錄2 練習答案
附錄3 Python代碼(掃書中二維碼獲取)
參考文獻(掃書中二維碼獲取)