電子產品製造工藝多場多尺度建模分析

李輝 等

  • 出版商: 電子工業
  • 出版日期: 2022-12-01
  • 定價: $588
  • 售價: 8.5$500
  • 語言: 簡體中文
  • 頁數: 177
  • ISBN: 7121444801
  • ISBN-13: 9787121444807
  • 下單後立即進貨 (約4週~6週)

商品描述

本書介紹了兩種典型電子產品汽車壓力傳感器和FPCB的製造工藝研究,分別對其關鍵製造工藝過程進行了多場多尺度建模分析,涵蓋了分子動力學與有限元建模分析、工藝參數設計與優化、工藝性能實驗驗證。全書共10章,匯集了兩種典型電子產品的關鍵工藝過程,包括銅-銅引線鍵合工藝中微觀接觸過程,六種典型材料引線鍵合工藝性能比較,汽車壓力傳感器灌封工藝中芯片殘餘應力分析,汽車壓力傳感器引線鍵合焊點的熱循環失效分析,FPCB化錫工藝分子動力學研究,FPCB曝光工藝中光場分析,FPCB蝕刻工藝中蝕刻劑噴淋特性研究,FPCB蝕刻腔中蝕刻劑濃度分佈與流場特性分析,FPCB蝕刻工藝中蝕刻腔幾何形貌演化過程分析,FPCB多蝕刻腔蝕刻過程分析。本書針對MEMS和FPCB製造工藝中的實際問題,建立物理模型和數值模擬模型,基於有限元和分子動力學方法,模擬電子產品製造過程中材料、微觀結構的演變,揭示加工過程中電子產品變形、應力、缺陷的形成機理與演化機制,在此基礎上提出變形、應力與缺陷的抑制策略及調控理論,指導工藝優化,提高電子產品良率。

目錄大綱

Chapter 1 Investigation on micro contact in Cu-Cu wire bonding process 001
1.1 Introduction 001
1.2 Molecular dynamics modeling of Cu-Cu wire bonding 003
1.3 Results and discussions 005
1.3.1 Formation and breakage processes of Cu-Cu weld 005
1.3.2 Analysis of Cu-Cu indentation morphology 007
1.3.3 Analysis of Cu-Cu atomic stress distribution 008
1.4 Conclusions 011
References 011
Chapter 2 Investigation on wire bonding performance with six typical
material pairs 014
2.1 Introduction 015
2.2 Molecular dynamics modeling of six material pairs 016
2.3 Results and discussions 018
2.3.1 Analysis of bonding forces and system energy 018
2.3.2 Analysis of atomic morphology for six material pairs 022
2.3.3 Analysis of atomic stress distribution for six material pairs 023
2.3.4 Four critical displacement points of six material pairs 025
2.4 Conclusions 028
References 028
?
Chapter 3 Investigation on residual stress on chip of automobile
pressure sensor in potting process 032
3.1 Introduction 032
3.2 Thermal experiment of MEMS pressure sensor 034
3.3 Analytic analysis of thermal stress on sensitive structure 036
3.4 Modeling and Simulation 038
3.4.1 Geometric model of MEMS pressure sensor 039
3.4.2 Finite element model of MEMS pressure sensor 039
3.4.3 Finite element simulation of residual stress 040
3.5 Conclusions 044
References 045
Chapter 4 Investigation on thermal cycle failure of wire bonding
weld in automobile pressure sensor 047
4.1 Introduction 048
4.2 Thermal cycling experiments of the MEMS pressure sensor 049
4.2.1 A sample of thermal cycling test 049
4.2.2 Experimental methods of the thermal fatigue test 050
4.2.3 Experimental results and analysis under thermal cycles 052
4.3 Numerical simulation 053
4.3.1 Theoretical model of thermal fatigue 053
4.3.2 Geometric model of the MEMS pressure sensor 055
4.3.3 Simulation model of thermal fatigue of solder joint 056
4.3.4 Simulation results of solder joint failures 058
4.4 Conclusions 062
References 063
Chapter 5 Investigation on acoustic injection on automobile
MEMS accelerometer 066
5.1 Introduction 066
5.2 Experimental investigation of acoustic injection 068
5.3 Modeling and simulation 070
5.3.1 Disassembly of inertial measurement unit (IMU)
MPU6050 070
5.3.2 Geometric model of accelerometer unit 070
5.3.3 Finite element model of accelerometer sensitive structure 072
5.3.4 Simulation results and discussion of acoustic injection 074
5.4 Conclusions 080
References 081
Chapter 6 Investigation on wetting behavior of Sn droplet on FPCB
substrate surfaces 083
6.1 Introduction 083
6.2 Models and methods of different surfaces 085
6.2.1 Modified embed atom method (MEAM) potential 086
6.2.2 Simulation models of different surfaces 087
6.2.3 Experimental procedures of wetting behavior
on different surfaces 090
6.3 Results and discussion 090
6.3.1 Effect of temperature on wetting behavior 090
6.3.2 Effect of roughness on wetting behavior 094
6.3.3 Effect of Sn surface on wetting behavior 097
6.3.4 Contact angle measurement on different substrate surfaces 101
6.4 Conclusions 103
References 103
Chapter 7 Investigation on etchant spraying characteristics in FPCB
etching process 107
7.1 Introduction 108
7.2 Equipment of the FPCB etching process 110
7.3 Numerical simulation of multi-nozzle spraying system 111
7.3.1 Governing equations of fluid dynamics 111
7.3.2 Simulation model of spraying equipment 112
7.4 Results and discussions 114
7.5 Conclusions 122
References 123
?
Chapter 8 Investigation of etchant concentration distribution and
fluid characteristics in FPCB etching cavity 126
8.1 Introduction 126
8.2 Model formulation and method of etching process 129
8.2.1 Governing equations of fluid dynamics and mass flux 129
8.2.2 Simulation model of the FPCB etching cavity 130
8.3 Results and discussions 133
8.4 Conclusions 140
References 140
Chapter 9 Investigation of etching cavity evolution in FPCB
etching process 143
9.1 Introduction 143
9.2 Equipment of the FPCB etching process 144
9.3 Numerical simulation of the FPCB etching process 146
9.3.1 Governing equations of the fluid dynamics 146
9.3.2 Simulation model of spraying and etching domain 147
9.4 Results and discussions 149
9.5 Conclusions 153
References 153
Appendix 156