搜尋演算法:人工智能如何尋找最優
龔超//畢樹人//武迪
- 出版商: 化學工業
- 出版日期: 2023-11-01
- 定價: $419
- 售價: 8.5 折 $356
- 語言: 簡體中文
- 頁數: 220
- 裝訂: 平裝
- ISBN: 7122439356
- ISBN-13: 9787122439352
-
相關分類:
Machine Learning
立即出貨
買這商品的人也買了...
-
$232算法詳解 捲1 算法基礎 -
深度學習 (Deep Learning)(繁體中文版)$1,200$948 -
$663算法訓練營:海量圖解 + 競賽刷題 (進階篇) -
$615算法訓練營:海量圖解 + 競賽刷題 (入門篇) -
Google 翻譯實作:機器翻譯 NLP 基礎及模型親手打造$1,200$948 -
$658情感分析:挖掘觀點、情感和情緒 (原書第2版)(Sentiment Analysis: Mining Opinions, Sentiments, and Emotions, 2/e) -
深度強化學習圖解$834$792 -
$331數據科學-機器學習如何數據掘金 -
$374情感分析進階 -
擴散模型從原理到實戰$479$455 -
$356數據素養:人工智能如何有據可依 -
$347多語言情感分析及其應用 -
$422擴散模型:生成式 AI 模型的理論、應用與代碼實踐 -
Tableau 數據可視化分析從新手到高手$419$398 -
$473遞歸算法與項目實戰 -
$422從零開始大模型開發與微調:基於 PyTorch 與 ChatGLM -
最強 AI 投資分析:打造自己的股市顧問機器人,股票趨勢分析×年報解讀×選股推薦×風險管理$750$593 -
$764高級算法和數據結構 -
$473YOLO 目標檢測 -
$356強化學習演算法入門 -
鍛鍊問題解決力!演算法與資料結構應用全圖解$650$514 -
線性代數與數據學習$828$787 -
精確掌握 AI 大趨勢!深度學習技術解密:日本 AI 神人,帶你正確學會從機器學習到生成式 AI 的核心基礎$630$498 -
機器學習與人工智慧深度問答集:從基礎到專業,提升 AI 知識力的 30道深度思考題 (Machine Learning Q and AI: 30 Essential Questions and Answers on Machine Learning and AI)$650$325 -
$356強化學習:人工智能如何知錯
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
85折
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$544 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
「人工智能超入門叢書」致力於面向人工智能各技術方向零基礎的讀者,內容涉及資料素養、機器學習、
視覺感知、情緒分析、搜尋演算法、強化學習、知識圖譜、專家系統等方向,體系完整、內容簡潔、文字通俗,
綜合介紹人工智能相關知識,並輔以程式碼解決問題,使得零基礎的讀者快速入門。
《搜尋演算法:人工智能如何尋找最優》是「人工智能超入門叢書」中的分冊,
本分冊以簡單易懂的語言風格講解了搜尋演算法的相關知識,內容包括演算法問題中涉及的基本資料結構與複雜度分析,
及狀態空間、樹、圖等較複雜的資料結構;同時,透過相關實例,講解了各類搜尋方法及線性規劃與非線性規劃;
也著重解讀了組合最佳化問題與群智能演算法。
全書內容包含了搜尋演算法所能用到的核心方法與技術,
另附三個附錄,分別講解了類別與繼承以及博弈基礎等。
本書搭配關鍵程式碼,是一本適合初學者閱讀學習的人工智能(AI)書籍。
本書可作為人工智能及電腦相關工作崗位的技術人員的入門讀物,
也可以供高等院校人工智能及電腦專業的師生閱讀參考,對搜尋演算法及人工智能方向感興趣的人群也可以閱讀。
作者簡介
畢樹人,中科院工學碩士,清華大學計算機系科研工程師。主要從事數據庫、隱私計算和算法優化領域的研究,聚焦數據庫在隱私計算領域的應用。前Opera高級技術專家,主導並參與了多個億級用戶的大型跨國項目。
目錄大綱
第1章搜尋的世界 001
1.1 出「棋」不易 002
1.1.1 棋技,智力的象徵?002
1.1.2 搜尋+評估=智能?006
1.1.3 AlphaGo是怎麼煉成的?008
1.2 給盲目一些訊息 011
1.2.1 盲目搜尋 011
1.2.2 啟發式搜尋 013
1.2.3 博弈中前行 015
1.3 一切皆可優化 017
1.3.1 目標與限制 017
1.3.2 蒙地卡羅樹搜尋 021
1.3.3 群智能 024
第2章基本資料結構與複雜度分析 030
2.1 資料關係與資料結構 031
2.1.1 數據關係 031
2.1.2 資料結構 032
2.2 棧與佇列 033
2.2.1 棧 033
2.2.2 隊列 038
2.2.3 雙端隊列 040
2.3 複雜度 042
2.3.1 衡量演算法的效率 042
2.3.2 複雜度的分析 044
第3章狀態空間、樹與圖 050
3.1 狀態空間 051
3.1.1 狀態的表示 051
3.1.2 迷宮、漢諾塔與八數碼 053
3.1.3 農夫過河 054
3.2 樹 057
3.2.1 樹的基本概念 057
3.2.2 二元樹 059
3.3 圖 062
3.3.1 圖的基本概念 062
3.3.2 圖的儲存方式 065
第4章搜尋技術 072
4.1 盲目搜尋 073
4.1.1 廣度優先搜尋演算法 073
4.1.2 深度優先搜尋演算法 080
4.2 啟發式搜尋 086
4.2.1 貪婪算法 086
4.2.2 A*演算法 089
4.3 對抗搜索 093
4.3.1 博弈下的極小極大搜尋 094
4.3.2 alpha–beta剪枝演算法 102
第5章線性與非線性規劃中的搜尋 105
5.1 最佳化問題 106
5.1.1 無所不在的最佳化 106
5.1.2 最佳化問題的描述 106
5.2 線性規劃 108
5.2.1 圖解線性規劃 110
5.2.2 搜頂點 113
5.2.3 程式求解 114
5.3 非線性規劃 117
5.3.1 從導數中獲得搜尋資訊 117
5.3.2 非線性規劃難在哪 124
5.3.3 程式求解 126
第6章組合最佳化與求解 132
6.1 組合最佳化問題 133
6.1.1 旅行商問題 134
6.1.2 背包問題 138
6.2 模擬退火 140
6.2.1 基本原理 140
6.2.2 參數與流程 142
6.2.3 程式碼 144
6.3 禁忌搜尋 149
6.3.1 基本原理 149
6.3.2 參數與流程 152
6.3.3 程式碼 155
第7章群智能演算法 160
7.1 遺傳演算法 161
7.1.1 基本原理 161
7.1.2 參數與流程 166
7.1.3 程式碼 171
7.2 蟻群演算法 176
7.2.1 基本原理 176
7.2.2 參數與流程 180
7.2.3 程式碼 184
7.3 粒子群演算法 189
7.3.1 基本原理 189
7.3.2 參數與流程 191
7.3.3 程式碼 196
附錄 199
附錄一類與繼承 200
附錄二人工智能的博弈基礎 208
附錄三騰訊扣叮Python實驗室:JupyterLab使用說明 214
