Business Metadata: Capturing Enterprise Knowledge (Paperback)
暫譯: 商業元數據:捕捉企業知識 (平裝本)

W.H. Inmon, Bonnie O'Neil, Lowell Fryman

買這商品的人也買了...

相關主題

商品描述

Description

People have a hard time communicating, and also have a hard time finding business knowledge in the environment. With the sophistication of search technologies like Google, business people expect to be able to get their questions answered about the business just like you can do an internet search. The truth is, knowledge management is primitive today, and it is due to the fact that we have poor business metadata management.

This book is about all the groundwork necessary for IT to really support the business properly. By providing not just data, but the context behind the data. For the IT professional, it will be tactically practical--very "how to" and a detailed approach to implementing best practices supporting knowledge management. And for the the IT or other manager who needs a guide for creating and justifying projects, it will help provide a strategic map.

  • First book that helps businesses capture corporate (human) knowledge and unstructured data, and offer solutions for codifying it for use in IT and management.

  • Written by Bill Inmon, one of the fathers of the data warehouse and well-known author, and filled with war stories, examples, and cases from current projects.

  • Very practical, includes a complete metadata acquisition methodology and project plan to guide readers every step of the way.

  • Includes sample unstructured metadata for use in self-testing and developing skills.
  • Table of Contents

    Business Metadata
    The Quest for Business Understanding
    Section I: Rationale and Planning
    1. What is Business Metadata
    a. What is Metadata?
    i. A brief history of metadata
    ii. Types of Metadata
    1. Technical
    2. Business
    3. Structured versus Unstructured MD
    b. What is Business MD?
    i. Some examples and usage
    c. When does data become MD?
    d. Who are the users of business metadata?
    e. A grid of metadata
    f. Business metadata and reference files
    2. The Value and Benefits of Business Metadata
    a. Metadata Provides Context:
    i. Example: the number “42”
    ii. The road sign analogy
    iii. The library card catalog analogy
    b. Business Metadata Provides Historical Perspective
    c. Contextual Benefits in Analytical Processing
    i. Simple Reports
    ii. Drill Downs
    iii. Exception Reporting
    iv. Heuristic Analysis
    v. KPI Analysis
    vi. Multivariate Analysis
    vii. Pattern Analysis
    viii. Spreadsheets
    ix. Screens
    d. Hidden MD
    e. The Information Supply Chain
    i. The Business Feedback Loop
    3. Who is responsible for Business Metadata?
    a. Who Has the Most to Gain from Business Metadata?
    b. Stewardship versus Ownership
    c. Business versus Technical Ownership
    d. Is Stewardship of Business Metadata any different?
    i. Data Stewardship
    ii. Metadata Stewardship
    iii. Business Metadata Stewardship
    e. Stewardship Challenges
    f. Why should MD be funded? (Bill)
    i. How and why should business metadata be funded
    1. The business case for business metadata
    ii. The search process – from a visceral standpoint
    1. Follow up from Subsequent Chapter
    2. The end user buying departmental tools
    3. The technician buying a repository
    iii. Blending everything together – a combined approach
    iv. Life without an organized approach to business metadata
    v. Funding Models
    1. Should MD be funded by ROI?
    2. What are the funding options (LOB or centralized IT, usage or overhead)?
    vi. Funding a Corporate Knowledge Base
    4. Business Metadata, Communication and Search (BKO)
    a. The need for better communication
    b. Faulty communication causes bad business practices
    c. Much time is lost in the organization due to not being able to find things
    i. Losing Your Car Keys Analogy
    d. The need for structured definitions
    e. The Role of Taxonomies
    5.
    Section II: How-To
    6. How do you initiate a MD project?
    a. What are the options?
    b. Planning Guidelines
    i. Examples in MSProject
    c. Defining the Business Metadata Strategy and Goals
    i. Strategy & Goals: Business Focus
    ii. Strategy & Goals: Technical Focus
    d. Complete enterprise strategy & goals
    e. Constructing a Strategic Plan
    f. Examples in MSWord
    7. Technology Infrastructure for Metadata
    a. MD Modeling and Design (CWM and OMG)
    i. Special Challenges of Business Metadata
    b. What does business metadata integration entail?
    i. Similarity to a data warehouse
    c. Should be treated like a data warehouse project
    d. Buy versus Build Alternatives
    e. Centralized MD Implementation
    i. Federated
    ii. Repository
    f. Distributed MD Implementation
    g. Hybrid MD Implementation
    h. ETL for business metadata
    i. Semantic integration
    8. Business Metadata Capture
    a. Business MD scope
    i. Vulcan mind meld
    ii. Intro to Unstructured MD
    iii. Business Rules
    iv. Definitions
    v. Domains
    b. Business Metadata Capture from Technical MD
    i. Enterprise Model layer
    ii. Conceptual Model layer
    iii. Logical Model layer
    iv. Physical Model layer
    c. Special Challenges of Business Metadata
    i. Capturing knowledge from Business People
    d. Capturing knowledge from Individuals
    e. Capturing knowledge from Groups
    i. The Socialization Factor
    ii. Wikis and Collabs
    f. PR: Encouraging and Incentivizing
    g. Special Stewardship Approaches
    i. Proactive vs. Reactive
    ii. “Governance Lite”
    8.5 Business Metadata Capture from Existing Data
    8.5.1 Technical Sources of MD
    8.5.1.1 ERP
    8.5.1.2 Reports
    8.5.1.3 Spreadsheets
    8.5.1.4 Documents
    8.5.1.5 DBMS system catalogs
    8.5.1.6 OLAP
    8.5.1.7 ETL
    8.5.1.8 Legacy System
    8.5.1.9 Data Warehouse
    8.5.2 Editing the metadata as it passes into the metadata repository
    8.5.2.1 Automation of the editing
    8.5.3 Granularizing metadata
    8.5.4 Expanding definitions & descriptions
    8.5.5 Synonym resolution
    8.5.6 Homonym Resolution
    8.5.7 Manual Metadata editing
    8.5.8 Turning Technical MD into Business MD
    9. MD Data Delivery
    a. Avoid Roach Motel
    b. Who are users? How do you deliver it?
    c. Active vs. Passive Delivery
    d. MD & DW
    e. MD & Marts
    f. MD & Operational Systems
    g. Example: Corporate Glossary
    Section III: Special Categories of Business MD
    9.5 Data Quality
    a. Why is data quality business metadata?
    b. Purpose of Data Quality
    c. Using a Data Quality Methodology
    d. Expressing data quality into the language of the business
    10. Semantics & Ontologies
    a. Semantics: The study of meaning
    b. Semantic frameworks
    i. Controlled Vocabulary
    ii. Taxonomy
    iii. Ontology
    iv. Chart showing Semantic Richness
    c. Semantics and Business Metadata
    d. Semantics and Technology
    i. The Semantic Web
    ii. SOA
    iii. Other tools
    iv. Standards: OWL etc
    e. Making semantics practical
    f. Two different uses
    i. Glossaries/CV
    ii. Search
    g. Simple implementations
    11. Unstructured MD
    a. Characteristics of Unstructured business metadata
    b. Where unstructured business metadata resides
    i. Reports
    ii. Spreadsheets
    iii. Text files
    iv. email
    c. Examples of unstructured business metadata
    d. Plucking business metadata out
    i. An example of finding business metadata in unstructured data
    e. Relationships among unstructured business metadata objects
    i. Familial
    ii. Hierarchy
    f. Using Unstructured business metadata
    i. Business metadata and understanding unstructured documents
    ii. Theming documents using business metadata
    g. Industrial recognized lists as a basis for understanding documents
    h. Linguistics
    i. Marrying structured & unstructured data
    12. Business Rules
    a. Why business rules are a type of business metadata
    b. Business rules and their role in managing the business
    c. Where do you find business rules?
    d. Purpose for managing them as metadata
    e. Business Rules and Rule Engine technology
    f. Business Rules and the Repository
    13. Metadata & Compliance
    a. Compliance – the issues
    b. Financial compliance
    c. Communications compliance
    d. Types of compliance
    i. Sarbanes Oxley
    ii. Basel II
    iii. HIPAA
    iv. Patriot Act
    e. How do you use MD to find compliance data?
    f. Using business metadata
    i. As a screen—Finding blather
    ii. To classify transactions
    iii. As a means to determine criticality
    g. Creating the historical record
    i. Preparing for the audit using business metadata
    h. An example of business metadata during the compliance process
    i. Document Retention and Compliance
    i. Document Retention issues
    ii. Maintenance of email,
    iii. Email as a knowledge base & the problems it creates
    14. Knowledge Management and Business Metadata
    a. Intersection of Business Metadata and Knowledge Management
    b. Knowledge Management in Practice
    i. Knowledge Capture
    ii. Knowledge Dissemination
    c. Explicit and Tacit Knowledge
    d. Building Intellectual capital and the Corporate Knowledgebase
    e. Social Issues
    i. Impact of collaboration on Knowledge
    ii. Graying of the Workforce

    Section IV: Putting it All Together
    15. Summary
    a. Business Metadata is important
    b. Business Metadata has been ignored in general discussions of metadata
    c. Lessons learned in the field
    d. /What does the future hold?
    e. Trends
    f. Resources

    Appendix:
    A: MD Repository Buy Methodology (Sample project plan)
    B: MD Repository Build Methodology (Sample project plan)
    C: glossary of terms (the metadata)

    商品描述(中文翻譯)

    **描述**

    人們在溝通上面臨困難,並且在環境中尋找商業知識也很困難。隨著像 Google 這樣的搜尋技術日益成熟,商業人士期望能夠像進行網路搜尋一樣,獲得有關商業的問題答案。事實上,今天的知識管理仍然相當原始,這是因為我們對商業元數據的管理不佳。

    本書探討了 IT 部門真正支持商業所需的所有基礎工作。它不僅提供數據,還提供數據背後的上下文。對於 IT 專業人士來說,這將是戰術上實用的——非常「如何做」並且詳細介紹了實施支持知識管理的最佳實踐的方法。對於需要創建和證明項目的 IT 或其他經理來說,它將幫助提供一個戰略地圖。

    - 首本幫助企業捕捉企業(人類)知識和非結構化數據的書籍,並提供將其編碼以供 IT 和管理使用的解決方案。
    - 由 Bill Inmon 撰寫,他是數據倉庫的奠基人之一,也是知名作者,書中充滿了來自當前項目的戰爭故事、範例和案例。
    - 非常實用,包括完整的元數據獲取方法論和項目計劃,以指導讀者每一步。
    - 包含用於自我測試和技能發展的範例非結構化元數據。

    **目錄**

    商業元數據
    尋求商業理解
    第一部分:理由與規劃
    1. 什麼是商業元數據
    a. 什麼是元數據?
    i. 元數據的簡史
    ii. 元數據的類型
    1. 技術
    2. 商業
    3. 結構化與非結構化元數據
    b. 什麼是商業元數據?
    i. 一些範例和用法
    c. 何時數據成為元數據?
    d. 誰是商業元數據的使用者?
    e. 元數據的網格
    f. 商業元數據與參考檔案
    2. 商業元數據的價值與好處
    a. 元數據提供上下文:
    i. 範例:「42」這個數字
    ii. 路標類比
    iii. 圖書館卡片目錄類比
    b. 商業元數據提供歷史視角
    c. 分析處理中的上下文好處
    i. 簡單報告
    ii. 深入分析
    iii. 異常報告
    iv. 啟發式分析
    v. KPI 分析
    vi. 多變量分析
    vii. 模式分析
    viii. 試算表
    ix. 螢幕
    d. 隱藏的元數據
    e. 資訊供應鏈
    i. 商業反饋循環
    3. 誰負責商業元數據?
    a. 誰最能從商業元數據中獲益?
    b. 管理與擁有的區別
    c. 商業擁有權與技術擁有權
    d. 商業元數據的管理是否有所不同?
    i. 數據管理
    ii. 元數據管理
    iii. 商業元數據管理
    e. 管理挑戰
    f. 為什麼應該資助元數據?(Bill)
    i. 商業元數據應如何及為何獲得資金
    1. 商業元數據的商業案例
    ii. 搜尋過程——從直觀的角度
    1. 從後續章節跟進
    2. 最終用戶購買部門工具
    3. 技術人員購買資料庫
    iii. 將所有內容融合在一起——綜合方法
    iv. 沒有組織化的商業元數據方法的生活
    v. 資金模型
    1. 元數據應該由 ROI 資助嗎?
    2. 資金選項是什麼(業務部門或集中 IT,使用或間接費用)?
    vi. 資助企業知識庫
    4. 商業元數據、溝通與搜尋(BKO)
    a. 需要更好的溝通
    b. 錯誤的溝通導致不良商業實踐
    c. 組織中因無法找到東西而浪費了很多時間
    i. 錯失車鑰匙的類比
    d. 需要結構化定義
    e. 分類法的角色
    5.
    第二部分:如何做
    6. 如何啟動元數據項目?
    a. 有哪些選擇?
    b. 規劃指導方針
    i. MSProject 中的範例
    c. 定義商業元數據策略與目標
    i. 策略與目標:商業焦點
    ii. 策略與目標:技術焦點
    d. 完整的企業策略與目標
    e. 構建戰略計劃
    f. MSWord 中的範例
    7. 元數據的技術基礎設施
    a. 元數據建模與設計(CWM 和 OMG)
    i. 商業元數據的特殊挑戰
    b. 商業元數據整合涉及什麼?
    i. 與數據倉庫的相似性
    c. 應像數據倉庫項目一樣對待
    d. 購買與建造的選擇
    e. 集中式元數據實施
    i. 聯邦式
    ii. 資料庫
    f. 分散式元數據實施
    g. 混合式元數據實施
    h. 商業元數據的 ETL
    i. 語義整合
    8. 商業元數據捕捉
    a. 商業元數據範圍
    i. 瓦肯心靈交融
    ii. 非結構化元數據簡介
    iii. 商業規則
    iv. 定義
    v. 領域
    b. 從技術元數據捕捉商業元數據
    i. 企業模型層
    ii. 概念模型層
    iii. 邏輯模型層
    iv. 實體模型層
    c. 商業元數據的特殊挑戰
    i. 從商業人士捕捉知識
    d. 從個人捕捉知識
    e. 從團體捕捉知識
    i. 社會化因素
    ii. 維基與協作
    f. PR:鼓勵與激勵
    g. 特殊的管理方法
    i. 主動與被動
    ii. “輕治理”
    8.5 從現有數據捕捉商業元數據
    8.5.1 元數據的技術來源
    8.5.1.1 ERP
    8.5.1.2 報告
    8.5.1.3 試算表
    8.5.1.4 文件
    8.5.1.5 DBMS 系統目錄
    8.5.1.6 OLAP
    8.5.1.7 ETL
    8.5.1.8 遺留系統
    8.5.1.9 數據倉庫
    8.5.2 在元數據進入元數據資料庫時編輯元數據
    8.5.2.1 編輯的自動化
    8.5.3 元數據的細化
    8.5.4 擴展定義與描述
    8.5.5 同義詞解析
    8.5.6 同音詞解析
    8.5.7 手動元數據編輯
    8.5.8 將技術元數據轉換為商業元數據
    9. 元數據數據交付
    a. 避免蟑螂旅館
    b. 誰是使用者?你如何交付?
    c. 主動與被動交付
    d. 元數據與數據倉庫
    e. 元數據與數據集市
    f. 元數據與操作系統
    g. 範例:企業詞彙表
    第三部分:商業元數據的特殊類別
    9.5 數據質量
    a. 為什麼數據質量是商業元數據?
    b. 數據質量的目的
    c. 使用數據質量方法論
    d. 將數據質量表達為商業語言
    10. 語義與本體論
    a. 語義:意義的研究
    b. 語義框架
    i. 控制詞彙
    ii. 分類法
    iii. 本體論
    iv. 顯示語義豐富度的圖表
    c. 語義與商業元數據
    d. 語義與技術
    i. 語義網
    ii. SOA
    iii. 其他工具
    iv. 標準:OWL 等
    e. 使語義實用
    f. 兩種不同的用途
    i. 詞彙表/控制詞彙
    ii. 搜尋
    g. 簡單實現
    11. 非結構化元數據
    a. 非結構化商業元數據的特徵
    b. 非結構化商業元數據的存放地
    i. 報告
    ii. 試算表
    iii. 文本檔
    iv. 電子郵件
    c. 非結構化商業元數據的範例
    d. 從非結構化數據中提取商業元數據
    i. 在非結構化數據中找到商業元數據的範例
    e. 非結構化商業元數據對象之間的關係
    i. 家族關係
    ii. 階層
    f. 使用非結構化商業元數據
    i. 商業元數據與理解非結構化文件
    ii. 使用商業元數據主題化文件
    g. 工業認可的清單作為理解文件的基礎
    h. 語言學
    i. 將結構化與非結構化數據結合
    12. 商業規則
    a. 為什麼商業規則是一種商業元數據
    b. 商業規則及其在管理商業中的角色
    c. 你在哪裡找到商業規則?
    d. 將其作為元數據管理的目的
    e. 商業規則與規則引擎技術
    f. 商業規則與資料庫
    13. 元數據與合規性
    a. 合規性——問題
    b. 財務合規性
    c. 通訊合規性
    d. 合規性類型
    i. 萨班斯-奥克斯利法案
    ii. 巴塞爾 II
    iii. HIPAA
    iv. 愛國者法案
    e. 你如何使用元數據來查找合規數據?
    f. 使用商業元數據
    i. 作為篩選——尋找無意義的內容
    ii. 用於分類交易
    iii. 作為確定重要性的手段
    g. 創建歷史記錄
    i. 使用商業元數據為審計做準備
    h. 在合規過程中商業元數據的範例
    i. 文件保留與合規性
    i. 文件保留問題
    ii. 電子郵件的維護,
    iii. 電子郵件作為知識庫及其帶來的問題
    14. 知識管理與商業元數據
    a. 商業元數據與知識管理的交集
    b. 實踐中的知識管理
    i. 知識捕捉
    ii. 知識傳播
    c. 明確與隱性知識
    d. 建立智力資本與企業知識庫
    e. 社會問題
    i. 協作對知識的影響
    ii. 勞動力的老化

    第四部分:整合所有內容
    15. 總結
    a. 商業元數據很重要
    b. 商業元數據在一般的元數據討論中被忽視
    c. 實地學到的教訓
    d. 未來會怎樣?
    e. 趨勢
    f. 資源

    附錄:
    A: 元數據資料庫購買方法論(範例項目計劃)
    B: 元數據資料庫建設方法論(範例項目計劃)
    C: 術語詞彙表(元數據)