Machine Learning: A Bayesian and Optimization Perspective (Hardcover)
暫譯: 機器學習:貝葉斯與優化觀點 (精裝版)
Sergios Theodoridis
- 出版商: Academic Press
- 出版日期: 2015-03-27
- 定價: $3,500
- 售價: 5.0 折 $1,750
- 語言: 英文
- 頁數: 1062
- 裝訂: Hardcover
- ISBN: 0128015225
- ISBN-13: 9780128015223
-
相關分類:
Machine Learning
-
相關翻譯:
機器學習 : 貝葉斯和優化方法 (英文版)(Machine Learning: A Bayesian and Optimization Perspective) (英版)
-
其他版本:
Machine Learning : A Bayesian and Optimization Perspective, 2/e (Hardcover)
買這商品的人也買了...
-
人月神話:軟體專案管理之道 (20 週年紀念版)(The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition, 2/e)$480$379 -
Artificial Intelligence: A Modern Approach, 3/e (IE-Paperback)$1,300$1,274 -
R 軟體 : 應用統計方法 (修訂版)$720$684 -
Network Information Theory (Hardcover)$1,460$1,431 -
無瑕的程式碼-敏捷軟體開發技巧守則 (Clean Code: A Handbook of Agile Software Craftsmanship)$580$452 -
Arduino UNO R3 開發板(副廠相容版)附傳輸線$400$380 -
無瑕的程式碼 番外篇-專業程式設計師的生存之道 (The Clean Coder: A Code of Conduct for Professional Programmers)
$360$281 -
Stochastic Processes: Theory for Applications (Hardcover)$3,930$3,734 -
超圖解 Arduino 互動設計入門, 2/e$680$578 -
ASP.NET MVC 5 網站開發美學$780$616 -
精實開發與看板方法$550$435 -
Machine Learning in Python: Essential Techniques for Predictive Analysis$1,750$1,663 -
Docker 入門與實戰$450$356 -
Android Hacker's Handbook 駭客攻防聖經 (Android Hacker's Handbook)$690$538 -
精通 Python|運用簡單的套件進行現代運算 (Introducing Python: Modern Computing in Simple Packages)$780$616 -
完整學會 Git, GitHub, Git Server 的24堂課$360$284 -
Getting Started with Intel Edison: Sensors, Actuators, Bluetooth, and Wi-Fi on the Tiny Atom-Powered Linux Module (Paperback)$1,040$988 -
圖解物聯網|感測器的架構與運用$380$323 -
忍者:JavaScript 開發技巧探秘 (Secrets of the JavaScript Ninja)$590$460 -
Building an FPS Game with Unity (Paperback)$1,760$1,672 -
Unity AI Game Programming, 2/e (Paperback)$1,790$1,701 -
3D遊戲設計全攻略:遊戲機制×關卡設計×鏡頭訣竅
$890$694 -
$1,617Deep Learning (Hardcover) -
TensorFlow + Keras 深度學習人工智慧實務應用$590$460 -
寫程式前就該懂的演算法 ─ 資料分析與程式設計人員必學的邏輯思考術 (Grokking Algorithms: An illustrated guide for programmers and other curious people)$390$308
相關主題
商品描述
This tutorial text gives a unifying perspective on machine learning by covering both probabilistic and deterministic approaches -which are based on optimization techniques – together with the Bayesian inference approach, whose essence lies in the use of a hierarchy of probabilistic models. The book presents the major machine learning methods as they have been developed in different disciplines, such as statistics, statistical and adaptive signal processing and computer science. Focusing on the physical reasoning behind the mathematics, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts.
The book builds carefully from the basic classical methods to the most recent trends, with chapters written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as short courses on sparse modeling, deep learning, and probabilistic graphical models.
- All major classical techniques: Mean/Least-Squares regression and filtering, Kalman filtering, stochastic approximation and online learning, Bayesian classification, decision trees, logistic regression and boosting methods.
- The latest trends: Sparsity, convex analysis and optimization, online distributed algorithms, learning in RKH spaces, Bayesian inference, graphical and hidden Markov models, particle filtering, deep learning, dictionary learning and latent variables modeling.
- Case studies - protein folding prediction, optical character recognition, text authorship identification, fMRI data analysis, change point detection, hyperspectral image unmixing, target localization, channel equalization and echo cancellation, show how the theory can be applied.
- MATLAB code for all the main algorithms are available on an accompanying website, enabling the reader to experiment with the code.
商品描述(中文翻譯)
這本教程文本提供了一個統一的機器學習觀點,涵蓋了基於優化技術的概率性和確定性方法,以及其本質在於使用一系列概率模型的貝葉斯推斷方法。本書介紹了在不同學科中發展的主要機器學習方法,如統計學、統計和自適應信號處理以及計算機科學。專注於數學背後的物理推理,所有各種方法和技術都進行了深入的解釋,並輔以範例和問題,為學生和研究人員理解和應用機器學習概念提供了寶貴的資源。
本書從基本的經典方法小心構建到最新的趨勢,章節的編寫力求自成一體,使文本適合不同的課程:模式識別、統計/自適應信號處理、統計/貝葉斯學習,以及有關稀疏建模、深度學習和概率圖模型的短期課程。
- 所有主要的經典技術:均值/最小二乘回歸和濾波、卡爾曼濾波、隨機逼近和在線學習、貝葉斯分類、決策樹、邏輯回歸和提升方法。
- 最新趨勢:稀疏性、凸分析和優化、在線分佈式算法、RKH空間中的學習、貝葉斯推斷、圖形和隱馬爾可夫模型、粒子濾波、深度學習、字典學習和潛變量建模。
- 案例研究 - 蛋白質摺疊預測、光學字符識別、文本作者識別、fMRI數據分析、變化點檢測、高光譜影像解混、目標定位、通道均衡和回聲消除,展示了理論如何應用。
- 所有主要算法的MATLAB代碼可在附帶網站上獲得,使用戶能夠實驗這些代碼。
