Adaptive Learning Methods for Nonlinear System Modeling
暫譯: 非線性系統建模的自適應學習方法

  • 出版商: Butterworth-Heineman
  • 出版日期: 2018-06-21
  • 售價: $5,760
  • 貴賓價: 9.5$5,472
  • 語言: 英文
  • 頁數: 388
  • 裝訂: Paperback
  • ISBN: 012812976X
  • ISBN-13: 9780128129760
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Adaptive Learning Methods for Nonlinear System Modeling introduces recent advances on adaptive algorithms and methods designed for nonlinear system modeling and identification. The book focuses on algorithms and methods that process data coming from an unknown nonlinear system. Such algorithms are based on an adaptive approach that allows the developer to estimate instant-by-instant (i.e., in an online manner) the nonlinearity introduced by the unknown system on the available data. This allows one to identify and model the unknown system, thus ensuring that the presence of nonlinearity in available data does not negatively affect performance.

Possible fields of the applications include, but are not limited to, Wireless Communications, Underwater Communications, Network Security, Nonlinear Modeling in Distributed Networks, Vehicular Networks, Active Noise Control, Information Forensics and Security and Nonlinear Modeling in Big Data, among others. This book is a valuable resource for researchers, PhD and post-graduate students, and those working in a variety of areas.

  • Presents key trends and future perspectives in the field of nonlinear signal processing
  • Provides some code for both methods and application scenarios
  • Tackles state-of-the-art techniques in the very exciting area of online and adaptive nonlinear identification
  • Helps users understand the most effective methods in non-linear system modeling, suggesting the right methodology to solve a particular problem

商品描述(中文翻譯)

《非線性系統建模的自適應學習方法》介紹了針對非線性系統建模和識別的自適應演算法和方法的最新進展。本書專注於處理來自未知非線性系統的數據的演算法和方法。這些演算法基於自適應方法,允許開發者即時(即在線)估計未知系統對可用數據引入的非線性。這使得能夠識別和建模未知系統,從而確保可用數據中的非線性不會對性能產生負面影響。

應用領域可能包括但不限於無線通信、水下通信、網絡安全、分佈式網絡中的非線性建模、車輛網絡、主動噪聲控制、信息取證與安全以及大數據中的非線性建模等。本書是研究人員、博士及研究生以及在各種領域工作的人的寶貴資源。

- 提出非線性信號處理領域的關鍵趨勢和未來展望
- 提供一些方法和應用場景的代碼
- 探討在線和自適應非線性識別這一令人興奮的領域中的最先進技術
- 幫助用戶理解非線性系統建模中最有效的方法,建議解決特定問題的正確方法論