Adaptive Approximation Based Control: Unifying Neural, Fuzzy and Traditional Adaptive Approximation Approaches

Jay A. Farrell, Marios M. Polycarpou

  • 出版商: Wiley
  • 出版日期: 2006-03-01
  • 售價: $1,400
  • 貴賓價: 9.8$1,372
  • 語言: 英文
  • 頁數: 440
  • 裝訂: Hardcover
  • ISBN: 0471727881
  • ISBN-13: 9780471727880
  • 下單後立即進貨 (約5~7天)

買這商品的人也買了...

相關主題

商品描述

Description

A highly accessible and unified approach to the design and analysis of intelligent control systems

Adaptive Approximation Based Control is a tool every control designer should have in his or her control toolbox.

Mixing approximation theory, parameter estimation, and feedback control, this book presents a unified approach designed to enable readers to apply adaptive approximation based control to existing systems, and, more importantly, to gain enough intuition and understanding to manipulate and combine it with other control tools for applications that have not been encountered before.

The authors provide readers with a thought-provoking framework for rigorously considering such questions as:

  • What properties should the function approximator have?
  • Are certain families of approximators superior to others?
  • Can the stability and the convergence of the approximator parameters be guaranteed?
  • Can control systems be designed to be robust in the face of noise, disturbances, and unmodeled effects?
  • Can this approach handle significant changes in the dynamics due to such disruptions as system failure?
  • What types of nonlinear dynamic systems are amenable to this approach?
  • What are the limitations of adaptive approximation based control?

Combining theoretical formulation and design techniques with extensive use of simulation examples, this book is a stimulating text for researchers and graduate students and a valuable resource for practicing engineers.

 

 

Table of Contents

Preface.

1. INTRODUCTION.

1.1 Systems and Control Terminology.

1.2 Nonlinear Systems.

1.3 Feedback Control Approaches.

1.3.1 Linear Design.

1.3.2 Adaptive Linear Design.

1.3.3 Nonlinear Design.

1.3.4 Adaptive Approximation Based Design.

1.3.5 Example Summary.

1.4 Components of Approximation Based Control.

1.4.1 Control Architecture.

1.4.2 Function Approximator.

1.4.3 Stable Training Algorithm.

1.5 Discussion and Philosophical Comments.

1.6 Exercises and Design Problems.

2. APPROXIMATION THEORY.

2.1 Motivating Example.

2.2 Interpolation.

2.3 Function Approximation.

2.3.1 Off-line (Batch) Function Approximation.

2.3.2 Adaptive Function Approximation.

2.4 Approximator Properties.

2.4.1 Parameter (Non)Linearity.

2.4.2 Classical Approximation Results.

2.4.3 Network Approximators.

2.4.4 Nodal Processors.

2.4.5 Universal Approximator.

2.4.6 Best Approximator Property.

2.4.7 Generalization.

2.4.8 Extent of Influence Function Support.

2.4.9 Approximator Transparency.

2.4.10 Haar Conditions.

2.4.11 Multivariable Approximation by Tensor Products.

2.5 Summary.

2.6 Exercises and Design Problems.

3. APPROXIMATION STRUCTURES.

3.1 Model Types.

3.1.1 Physically Based Models.

3.1.2 Structure (Model) Free Approximation.

3.1.3 Function Approximation Structures.

3.2 Polynomials.

3.2.1 Description.

3.2.2 Properties.

3.3 Splines.

3.3.1 Description.

3.3.2 Properties.

3.4 Radial Basis Functions.

3.4.1 Description.

3.4.2 Properties.

3.5 Cerebellar Model Articulation Controller.

3.5.1 Description.

3.5.2 Properties.

3.6 Multilayer Perceptron.

3.6.1 Description.

3.6.2 Properties.

3.7 Fuzzy Approximation.

3.7.1 Description.

3.7.2 Takagi-Sugeno Fuzzy Systems.

3.7.3 Properties.

3.8 Wavelets.

3.8.1 Multiresolution Analysis (MRA).

3.8.2 MRA Properties.

3.9 Further Reading.

3.10 Exercises and Design Problems.

4. PARAMETER ESTIMATION METHODS.

4.1 Formulation for Adaptive Approximation.

4.1.1 Illustrative Example.

4.1.2 Motivating Simulation Examples.

4.1.3 Problem Statement.

4.1.4 Discussion of Issues in Parametric Estimation.

4.2 Derivation of Parametric Models.

4.2.1 Problem Formulation for Full-State Measurement.

4.2.2 Filtering Techniques.

4.2.3 SPR Filtering.

4.2.4 Linearly Parameterized Approximators.

4.2.5 Parametric Models in State Space Form.

4.2.6 Parametric Models of Discrete-Time Systems.

4.2.7 Parametric Models of Input-Output Systems.

4.3 Design of On-Line Learning Schemes.

4.3.1 Error Filtering On-Line Learning (EFOL) Scheme.

4.3.2 Regressor Filtering On-Line Learning (RFOL) Scheme.

4.4 Continuous-Time Parameter Estimation.

4.4.1 Lyapunov Based Algorithms.

4.4.2 Optimization Methods.

4.4.3 Summary.

4.5 On-Line Learning: Analysis.

4.5.1 Analysis of LIP EFOL scheme with Lyapunov Synthesis Method.

4.5.2 Analysis of LIP RFOL scheme with the Gradient Algorithm.

4.5.3 Analysis of LIP RFOL scheme with RLS Algorithm.

4.5.4 Persistency of Excitation and Parameter Convergence.

4.6 Robust Learning Algorithms.

4.6.1 Projection modification.

4.6.2 σ-modification.

4.6.3 &epsis;-modification.

4.6.4 Dead-zone modification.

4.6.5 Discussion and Comparison.

4.7 Concluding Summary.

4.8 Exercises and Design Problems.

5. NONLINEAR CONTROL ARCHITECTURES.

5.1 Small-Signal Linearization.

5.1.1 Linearizing Around an Equilibrium Point.

5.1.2 Linearizing Around a Trajectory.

5.1.3 Gain Scheduling.

5.2 Feedback Linearization.

5.2.1 Scalar Input-State Linearization.

5.2.2 Higher-Order Input-State Linearization.

5.2.3 Coordinate Transformations and Diffeomorphisms.

5.2.4 Input-Output Feedback Linearization.

5.3 Backstepping.

5.3.1 Second order system.

5.3.2 Higher Order Systems.

5.3.3 Command Filtering Formulation.

5.4 Robust Nonlinear Control Design Methods.

5.4.1 Bounding Control.

5.4.2 Sliding Mode Control.

5.4.3 Lyapunov Redesign Method.

5.4.4 Nonlinear Damping.

5.4.5 Adaptive Bounding Control.

5.5 Adaptive Nonlinear Control.

5.6 Concluding Summary.

5.7 Exercises and Design Problems.

6. ADAPTIVE APPROXIMATION: MOTIVATION AND ISSUES.

6.1 Perspective for Adaptive Approximation Based Control.

6.2 Stabilization of a Scalar System.

6.2.1 Feedback Linearization.

6.2.2 Small-Signal Linearization.

6.2.3 Unknown Nonlinearity with Known Bounds.

6.2.4 Adaptive Bounding Methods.

6.2.5 Approximating the Unknown Nonlinearity.

6.2.6 Combining Approximation with Bounding Methods.

6.2.7 Combining Approximation with Adaptive Bounding Methods.

6.2.8 Summary.

6.3 Adaptive Approximation Based Tracking.

6.3.1 Feedback Linearization.

6.3.2 Tracking via Small-Signal Linearization.

6.3.3 Unknown Nonlinearities with Known Bounds.

6.3.4 Adaptive Bounding Design.

6.3.5 Adaptive Approximation of the Unknown Nonlinearities.

6.3.6 Robust Adaptive Approximation.

6.3.7 Combining Adaptive Approximation with Adaptive Bounding.

6.3.8 Some Adaptive Approximation Issues.

6.4 Nonlinear Parameterized Adaptive Approximation.

6.5 Concluding Summary.

6.6 Exercises and Design Problems.

7. ADAPTIVE APPROXIMATION BASED CONTROL: GENERAL THEORY.

7.1 Problem Formulation.

7.1.1 Trajectory Tracking.

7.1.2 System.

7.1.3 Approximator.

7.1.4 Control Design.

7.2 Approximation Based Feedback Linearization.

7.2.1 Scalar System.

7.2.2 Input-State.

7.2.3 Input-Output.

7.2.4 Control Design Outside the Approximation Region D.

7.3 Approximation Based Backstepping.

7.3.1 Second Order Systems.

7.3.2 Higher Order Systems.

7.3.3 Command Filtering Approach.

7.3.4 Robustness Considerations.

7.4 Concluding Summary.

7.5 Exercises and Design Problems.

8. ADAPTIVE APPROXIMATION BASED CONTROL FOR FIXED-WING AIRCRAFT.

8.1 Aircraft Model Introduction.

8.1.1 Aircraft Dynamics.

8.1.2 Non-dimensional Coefficients.

8.2 Angular Rate Control for Piloted Vehicles.

8.2.1 Model Representation.

8.2.2 Baseline Controller.

8.2.3 Approximation Based Controller.

8.2.4 Simulation Results.

8.3 Full Control for Autonomous Aircraft.

8.3.1 Airspeed and Flight Path Angle Control.

8.3.2 Wind-axes Angle Control.

8.3.3 Body Axis Angular Rate Control.

8.3.4 Control Law and Stability Properties.

8.3.5 Approximator Definition.

8.3.6 Simulation Analysis.

8.4 Conclusions.

8.5 Aircraft Notation.

Appendix A: Systems and Stability Concepts.

A.1 Systems Concepts.

A.2 Stability Concepts.

A.2.1 Stability Definitions.

A.2.2 Stability Analysis Tools.

A.3 General Results.

A.4 Prefiltering.

A.5 Other Useful Results.

A.5.1 Smooth Approximation of the Signum function.

A.6 Problems.

Appendix B: Recommended Implementation and Debugging Approach.

References.

Index.

商品描述(中文翻譯)

描述

高度易於理解且統一的智能控制系統設計和分析方法

自適應近似控制是每個控制設計師在其控制工具箱中應該擁有的工具。本書結合了近似理論、參數估計和反饋控制,提出了一種統一的方法,使讀者能夠將自適應近似控制應用於現有系統,更重要的是,獲得足夠的直覺和理解,以便將其與其他控制工具結合應用於以前未遇到的應用。

作者為讀者提供了一個引人思考的框架,以嚴謹地考慮以下問題:

- 函數逼近器應具備哪些特性?
- 某些逼近器家族是否優於其他家族?
- 可以保證逼近器參數的穩定性和收斂性嗎?
- 可以設計出在噪聲、干擾和未建模效應面前具有魯棒性的控制系統嗎?
- 這種方法能否應對由於系統故障等干擾而引起的動態變化?
- 哪些類型的非線性動態系統適用於這種方法?
- 自適應近似控制的局限性是什麼?

本書結合理論公式和設計技巧,並廣泛使用模擬示例,是研究人員和研究生的激發性教材,也是實踐工程師的寶貴資源。

目錄

前言
1. 簡介
1.1 系統和控制術語
1.2 非線性系統
1.3 反饋控制方法
1.3.1 線性設計
1.3.2 自適應線性設計
1.3.3 非線性設計
1.3.4 自適應近似設計
1.3.5 實例總結
1.4 近似控制的組成部分
1.4.1 控制架構
1.4.2 函數逼近器
1.4.3 穩定的訓練算法
1.5 討論和哲學評論
1.6 練習和設計問題
2. 近似理論
2.1 啟發性示例
2.2 插值
2.3 函數逼近